Skip to main content

Total Phosphorus, Nitrogen and Carbon in Leaf Litter

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Many terrestrial, freshwater and coastal environments receive abundant plant litter as an important source of carbon, nitrogen and phosphorus for microorganisms and detritivores. Therefore, the dynamics of these elemental pools in litter provide important ecological information on carbon and nutrient cycling. This chapter describes methods for quantifying carbon, nitrogen and phosphorus in decomposing plant litter. The collected material is first ground to a fine powder, which is used to analyse all three elements. The subsequent phosphorus analysis involves an acid or alkaline digestion to transform all phosphorus compounds to ortho-phosphate, which is then quantified spectrophotometrically by the ascorbic acid method. The analysis of total nitrogen starts with an acid digestion of the litter and reduction of all oxidized nitrogen species to ammonia, which is also quantified spectrophotometrically. A simple approach to estimate the total carbon content of plant litter consists in combusting ground samples at 500 °C and measuring the mass loss on ignition (LOI), where 50% of the loss is assumed to be carbon. Alternatively, carbon and nitrogen are determined on a CHN elemental analyser. Major advantages of that approach are that the analyses require very little plant material and that both elements are quantified in the same sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelho, M. (2001). From litterfall to breakdown in streams: A review. TheScientific World, 1, 656–680.

    Article  CAS  Google Scholar 

  • Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439–449.

    Article  Google Scholar 

  • Bärlocher, F., & Sridhar, K. R. (2014). Association of animals and fungi in leaf decomposition. In G. Jones, K. Hyde, & K.-L. Pang (Eds.), Freshwater fungi and fungus-like Organisms (Marine and freshwater Botany) (pp. 413–441). Berlin: De Gruyter.

    Google Scholar 

  • Boyero, L., Graça, M. A. S., Tonin, A. M., Pérez, J., Swafford, A. J., Ferreira, V., Landeira-Dabarca, A., Alexandrou, M. A., Gessner, M. O., McKie, B. G., Albariño, R. J., Barmuta, L. A., Callisto, M., Chara, J., Chauvet, E., Colon-Gaud, C., Dudgeon, D., Encalada, A. C., Figueroa, R., Flecker, A. S., Fleituch, T., Frainer, A., Gonçalves, J. F., Jr., Helson, J. E., Iwata, T., Mathooko, J., M’Erimba, C., Pringle, C. M., Ramirez, A., Swan, C. M., Yule, C. M., & Pearson, R. G. (2017). Riparian plant litter quality increases with latitude. Scientific Reports, 7, 10562.

    Article  Google Scholar 

  • Ebina, J., Tsutsui, T., & Shirai, T. (1983). Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research, 17, 1721–1726.

    Article  CAS  Google Scholar 

  • Enríquez, S., Duarte, M., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia, 94, 457–471.

    Article  Google Scholar 

  • Ferreira, V., Chauvet, E., & Canhoto, C. (2015). Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 72, 206–216.

    Article  CAS  Google Scholar 

  • Ferreira, V., Gulis, V., & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729.

    Article  Google Scholar 

  • Ferskvandsbiologisk Laboratorium University of Copenhagen (Ed.). (1992a). Limnologisk Metodik. Copenhagen: Akademisk Forlag. (Nitrogen method pp. 28–29 and 36–37).

    Google Scholar 

  • Ferskvandsbiologisk Laboratorium University of Copenhagen (Ed.). (1992b). Limnologisk Metodik. Copenhagen: Akademisk Forlag. (Phosphorus method pp. 40–41 and 106–107).

    Google Scholar 

  • Flindt, M. R., Pardal, M. A., Lillebø, A. I., Martins, I., & Marques, J. C. (1999). Nutrient cycling and plant dynamics in estuaries: A brief review. Acta Oecologica, 20, 237–248.

    Article  Google Scholar 

  • Garcia-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., & Hättenschwiler, S. (2016). The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30, 819–829.

    Article  Google Scholar 

  • Gessner, M. O. (1991). Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshwater Biology, 26, 387–398.

    Article  CAS  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 75, 1807–1817.

    Article  Google Scholar 

  • Gessner, M. O., Robinson, C. T., & Ward, J. V. (1998). Leaf breakdown in streams of an alpine glacial floodplain: Dynamics of fungi and nutrients. Journal of the North American Benthological Society, 17, 403–419.

    Article  Google Scholar 

  • Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372–380.

    Google Scholar 

  • Graça, M. A. S., & Poquet, J. M. (2014). Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia, 174, 1021–1032.

    Article  Google Scholar 

  • Gulis, V., & Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48, 123–134.

    Article  Google Scholar 

  • Gulis, V., Ferreira, V., & Graça, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: Implications for stream assessment. Freshwater Biology, 51, 1655–1669.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (2nd ed.). Boca Raton: CRC Press. 1016 pp.

    Google Scholar 

  • Kennedy, K., & El-Sabaawi, R. W. (2017). A global meta-analysis of exotic versus native leaf decay in stream ecosystems. Freshwater Biology, 6, 977–989.

    Article  Google Scholar 

  • Martínez, A., Pérez, J., Molinero, J., Sagarduy, M., & Pozo, J. (2015). Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams. Science of the Total Environment, 503, 251–257.

    Article  Google Scholar 

  • Meyer, J. L., & Johnson, C. (1983). The influence of elevated nitrate concentration on rate of leaf decomposition in a stream. Freshwater Biology, 13, 177–184.

    Article  CAS  Google Scholar 

  • Ostrofsky, M. L. (1997). Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society, 16, 750–759.

    Article  Google Scholar 

  • Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J. H. C., Vendramini, F., Cabido, M., & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in Central Argentina. Plant and Soil, 218, 21–30.

    Article  Google Scholar 

  • Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton: Princeton University Press.

    Google Scholar 

  • Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater systems. Annual Review of Ecology and Systematics, 17, 567–594.

    Article  Google Scholar 

  • Wolanski, E., & Elliott, M. (2015). Estuarine Ecohydrology (2nd ed.). Amsterdam: Elsevier. 322 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mogens R. Flindt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flindt, M.R., Lillebø, A.I., Pérez, J., Ferreira, V. (2020). Total Phosphorus, Nitrogen and Carbon in Leaf Litter. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_11

Download citation

Publish with us

Policies and ethics