Skip to main content

State-Dependent Dilatancy of Soils: Experimental Evidence and Constitutive Modeling

  • Conference paper
  • First Online:
Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 91))

Abstract

This work provides a new evaluation method of the dilatancy for cohesive soils from monotonic and cyclic undrained triaxial tests. Herein it is implemented for experiments performed on Kaolin. Leastwise for this soft soil the dilatancy turns out to be a function of the stress ratio \(\eta \) and the void ratio e along with the intrinsic material parameters. Furthermore, an OCR-definition, which includes the influence of both the stress ratio and void ratio such that \(d = f(\mathrm{OCR},C)\) with C being a set of inherent parameters is proposed. In addition based on the experimental observations it is suggested that there is an overconsolidation ratio \(\text {OCR}_{ci}\) at which the soft soil behaviour changes from contractant in case of \(\text {OCR}<\text {OCR}_{ci}\) to dilatant (the material can both contract and dilate depending on \(\eta \)) in case of \(\text {OCR}>\text {OCR}_{ci}\) with the PTL lying below the CSL in this case. Finally, a constitutive relation describing the behaviour of soft soils including the dilatancy and viscosity is proposed. Some simulations of monotonic as well as cyclic tests are shown to prove the accurate performance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Taylor in 1954 [3], pp. 345–347.

  2. 2.

    Note the equality \(\dot{\sqcup }=d\sqcup /dt\).

References

  1. Andersen, K.H.: Bearing capacity under cyclic loading - offshore, along the coast, and on land. Can. Geotech. J. 46(5), 513–535 (2009)

    Article  Google Scholar 

  2. Cattoni, E., Tamagnini, C.: On the seismic response of a propped r.c. diaphragm wall in a saturated clay. Acta Geotech. (2019). https://doi.org/10.1007/s11440-019-00771-4

  3. Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1954)

    Google Scholar 

  4. Rowe, P., Taylor, G.I.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Roy. Soc. Lond. Math. Phys. Sci. 269, 500–527 (1962)

    Article  Google Scholar 

  5. Pradhan, T.B.S., Tatsuoka, F., Sato, Y.: Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found. 29(1), 45–64 (1989)

    Article  Google Scholar 

  6. Li, X.S., Dafalias, Y.F.: Dilatancy for cohesionless soils. Géotechnique 50(4), 449–460 (2000)

    Article  Google Scholar 

  7. Yang, Z., Xu, T.: J2-deformation type model coupled with state dependent dilatancy. Comput. Geotech. 105, 129–141 (2019)

    Article  Google Scholar 

  8. Wan, R.G., Guo, P.J.: Stress dilatancy and fabric dependence on sand behavior. J. Eng. Mech. 160(6), 635–645 (2004)

    Article  Google Scholar 

  9. Wichtmann, T.: Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik am KIT, Habilitation, no. 181 (2016)

    Google Scholar 

  10. Pradhan, T.B.S., Tatsuoka, F.: On stress-dilatancy equations of sand subjected to cyclic loading. Soils Found. 29(1), 65–81 (1989)

    Article  Google Scholar 

  11. Verdugo, R., Ishihara, K.: The steady state of sandy soils. Soils Found. 36(2), 65–81 (1996)

    Article  Google Scholar 

  12. Coop, M.R., Atkinson, J.H., Taylor, R.N.: Strength and stiffness of structured and unstructured soils. In: Proceedings of the 11th European Conference on Soil Mechanics and Foundation Engineering, Copenhagen, vol. 1, pp. 55–62 (1995)

    Google Scholar 

  13. Amorosi, A., Rampello, S.: An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique 57(2), 153–166 (2007)

    Article  Google Scholar 

  14. Wichtmann, T., Triantafyllidis, T.: Monotonic and cyclic tests on kaolin: a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading. Acta Geotech. 13(5), 1103–1128 (2017)

    Article  Google Scholar 

  15. Tafili, M., Triantafyllidis, T.: A simple hypoplastic model with loading surface accounting for viscous and fabric effects of clays. Submitted for IJNAMG (2017)

    Google Scholar 

  16. Matsuoka, H., Nakai, T.: A new failure for soils in three-dimensional stresses. In: Proceedings of the IUTAM Symposium on Deformation and Failure of Granular Materials, Delft, pp. 253–263 (1982)

    Google Scholar 

  17. Argyris, J.H., Faust, G., Szimmat, J., Warnke, E.P., Willam, K.J.: Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl. Eng. Des. 282(1), 42–75 (1974)

    Article  Google Scholar 

  18. Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Meth. Geomech. 32, 915–948 (2008)

    Article  Google Scholar 

  19. Fuentes, W., Triantafyllidis, T.: ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int. J. Numer. Anal. Meth. Geomech. 39(11), 1235–1254 (2015)

    Article  Google Scholar 

  20. Fuentes, W., Tafili, M., Triantafyllidis, T.: An ISA-plasticity-based model for viscous and non-viscous clays. Acta Geotech. 13(2), 367–386 (2017)

    Google Scholar 

  21. Pradhan, T.B.S., Tatsuoka, F., Mohri, Y., Sato, Y.: An automated triaxial testing system using a simple triaxial cell for soils. Soils Found. 29(1), 151–160 (1989)

    Article  Google Scholar 

  22. Ishihara, K., Tatsuoka, F., Yasuda, S.: Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found. 15(1), 29–44 (1975)

    Article  Google Scholar 

  23. Dafalias, Y.F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130(6), 622–634 (2004)

    Article  Google Scholar 

  24. Grandas, C., Triantafyllidis, T.: Personal communication. Institute of Soil Mechanics and Rock Mechanics (IBF, KIT) (2019)

    Google Scholar 

  25. Roscoe, K.H., Schofield, A.N.: Mechanical behaviour of an idealized ‘wet’ clay. In: Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, vol. 1, pp. 47–54 (1963)

    Google Scholar 

  26. Roscoe, K.H., Burland, J.B.: On the generalized stress-strain behaviour of ‘wet’ clay. Engineering plasticity, pp. 535–609 (1968)

    Google Scholar 

  27. Masin, D.: Hypoplastic models for fine-grained soils. Ph.D. thesis, Charles University, Prague (2006)

    Google Scholar 

  28. Niemunis, A.: Extended hypoplastic models for soils. Habilitation, Monografia 34, Ruhr-University Bochum (2003)

    Google Scholar 

  29. Niemunis, A., Grandas, C., Prada, L.: Anisotropic Visco-hypoplasticity. Acta Geotech. 4(4), 293–314 (2009)

    Article  Google Scholar 

  30. Finno, R.J., Chung, C.K.: Stress-strain-strength responses of compressible Chicago glacial clays. J. Geotech. Eng. ASCE 118(10), 1607–1625 (1992)

    Article  Google Scholar 

  31. Yasuhara, K., Hirao, K., Hyde, A.: Effects of cyclic loading on undrained strength and compressibility of clay. Soils Found. 32(1), 100–116 (1992)

    Article  Google Scholar 

  32. Bohac, J., Herle, I., Feda, J., Klablena, P.: Properties of fissured Brno clay. In: Proceedings of the 11th European Conference on Soil Mechanics and Foundation Engineering, Copenhagen, vol. 3, pp. 19–24 (1995)

    Google Scholar 

  33. Sheahan, T.C., Ladd, C.C., Germaine, J.T.: Rate dependentundrained shear behavior of saturated clay. J. Geotech. Eng. ASCE 122(2), 99–108 (1996)

    Article  Google Scholar 

  34. Burland, J.B., Rampello, S., Georgiannou, V.N., Calabresi, G.: A laboratory study of the strength of four stiff clays. Géotechnique 46(3), 491–514 (1996)

    Article  Google Scholar 

  35. Rampello, S., Callisto, L.: A study on the subsoil of the tower of Pisa based on results from standard and high-quality samples. Can. Geotech. J. 35(6), 1074–1092 (1998)

    Article  Google Scholar 

  36. Sivakumar, V., Doran, I.G., Graham, J.: Particle orientation and its influence on the mechanical behavior of isotropically consolidated reconstituted clay. Eng. Geol. 66, 197–209 (2002)

    Article  Google Scholar 

  37. Gasparre, A., Nishimura, S., Coop, M.R., Jardine, R.J.: The influence of structure on the behavior of London clay. Géotechnique 57(1), 19–31 (2007)

    Article  Google Scholar 

  38. Chu, D.B., Stewart, J.P., Boulanger, R.W., Lin, P.S.: Cyclic softening of low-plasticity clay and its effect on seismic foundation performance. J. Geotech. Geoenviron. Eng. ASCE 134(11), 1595–1608 (2008)

    Article  Google Scholar 

  39. Abdulhadi, N.O., Germaine, J.T., Whittle, A.J.: Stress-dependent behavior of saturated clay. Can. Geotech. J. 49, 907–916 (2012)

    Article  Google Scholar 

  40. Duong, N.T., Suzuki, M., Hai, N.V.: Rate and acceleration effects on residual strength of kaolin and kaolin-bentonite mixtures in ring shearing. Soils Found. 58, 1153–1172 (2018)

    Article  Google Scholar 

  41. Hvorslev, M.: Physical components of the shear strength of saturated clays. In: ASCE Research Conference, Shear Strength of Cohesive Soils, Boulder Colorado (1960)

    Google Scholar 

  42. Atkinson, J.: The Mechanics of Soils and Foundations. McGraw-Hill, New York (1993)

    Google Scholar 

  43. Shibata, T.: On the volume changes of normally-consolidated clays. In: Annuals, Disaster Prevention Research Institute, Kyoto (1963). (in Chinese)

    Google Scholar 

  44. Tafili, M., Triantafyllidis, T.: AVISA: anisotropic visco ISA model and its performance at cyclic loading. Submitted for Acta Geotech. (2019)

    Google Scholar 

  45. Tafili, M., Triantafyllidis, T.: Constitutive model for viscous clays under the ISA framework. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes - Theoretical Results and Applications, vol. 82, pp. 324–340. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  46. Niemunis, A., Krieg, S.: Viscous behaviour of soils under oedometric conditions. Can. Geotech. J. 33, 159–168 (1996)

    Article  Google Scholar 

  47. Fuentes, W., Hadzibeti, M., Triantafyllidis, T.: Constitutive model for clays under the ISA framework. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes - Benchmarks and Simulations, vol. 80, pp. 115–130. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Acknowledgements

The financial support from the German Research Community (DFG TR 218/27-1) is herewith gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merita Tafili .

Editor information

Editors and Affiliations

Appendix

Appendix

Constitutive model

Constitutive equation:

$$\begin{aligned} {\dot{\varvec{\sigma }}}=\mathsf{E}:\left( \dot{\varvec{ \varepsilon }}-\dot{\varvec{ \varepsilon }}^{hp}-\dot{\varvec{ \varepsilon }}^{vis}\right) \end{aligned}$$
(52)

Elasticity:

(53)
$$\begin{aligned}&\displaystyle \mathsf{E}_{ abcd}=\mathsf{Q}_{abij} :\mathsf{E}_{ijkl}:{\mathsf{Q}}_{klcd} \end{aligned}$$
(54)
(55)

Hypoplasticity:

(56)
(57)
(58)

Viscosity:

(59)
(60)
(61)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tafili, M., Triantafyllidis, T. (2020). State-Dependent Dilatancy of Soils: Experimental Evidence and Constitutive Modeling. In: Triantafyllidis, T. (eds) Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice. Lecture Notes in Applied and Computational Mechanics, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-030-28516-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28516-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28515-9

  • Online ISBN: 978-3-030-28516-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics