Skip to main content

Teaching of General Psychology: Problem Solving

  • Living reference work entry
  • First Online:
International Handbook of Psychology Learning and Teaching

Part of the book series: Springer International Handbooks of Education ((SIHE))

  • 119 Accesses

Abstract

This chapter defines problem solving and its research history. In addition to this, it introduces data science approaches to research on problem solving for psychology students, educators, and researchers. The chapter describes four new core content and topical areas on the immediate horizon: data science, Internet of things, network analyses, and artificial intelligence. The chapter elucidates implications for data science education in general psychology, focusing on research in problem solving and on how problem solving can be taught in higher education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aktas, M. E., Akbas, E., & Fatmaoui, A. E. (2019). Persistence homology of networks: methods and applications. Applied Network Science, 4(1). https://doi.org/10.1007/s41109-019-0179-3

  • Berry, D.C., & Broadbent, D.E. (1984). On the relationship between task performance and associated verbalizable knowledge. Quarterly Journal of Experimental Psychology, 36A, 209–231.

    Google Scholar 

  • Berry, D.C., & Broadbent, D.E. (1988). Interactive tasks and the implicit–explicit distinction. British Journal of Psychology, 79, 251–272.

    Google Scholar 

  • Blei, D., & Smyth, P. (2017). Science and data science. Proceedings of the National Academy of Sciences, 114(33), 8689–8692. https://doi.org/10.1073/pnas.1702076114

    Article  Google Scholar 

  • Chen, M., Herrera, F., & Hwang, K. (2018). Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access, 6, 19774–19783. https://doi.org/10.1109/ACCESS.2018.2791469

    Article  Google Scholar 

  • Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1(August), 100002. https://doi.org/10.1016/j.caeai.2020.100002

    Article  Google Scholar 

  • Davis, N. (2012). Leadership for online learning within and across secondary schools: An ecological perspective on change theories. In International federation of information processing working group 3.3 (pp. 1–15).

    Google Scholar 

  • Davis, N., Eickelmann, B., & Zaka, P. (2013). Restructuring of educational systems in the digital age from a co-evolutionary perspective. Journal of Computer Assisted Learning, 29, 438–450. https://doi.org/10.1111/jcal.12032

    Article  Google Scholar 

  • Diestel, R. (2006). Graph theory. https://doi.org/10.1103/PhysRevLett.107.085504

  • Duncker, K. (1935). Zur Psychologie des produktiven Denkens. Berlin: Springer.

    Google Scholar 

  • Etzion, O., Fournier, F., & Arcushin, S. (2014). Tutorial on the Internet of everything. In Proceedings of the 8th ACM international conference on distributed event-based systems – DEBS ’14 (pp. 236–237). https://doi.org/10.1145/2611286.2611308

  • Evans, D. (2011, April). The Internet of Things – How the next evolution of the Internet is changing everything. CISCO white paper, pp. 1–11. https://doi.org/10.1109/IEEESTD.2007.373646

  • Funke, J. (1992). Wissen über dynamische Systeme: Erwerb, Repräsentation und Anwendung. Berlin: Springer.

    Google Scholar 

  • Ge, X., & Land, S. M. (2003). Scaffolding students’ problem-solving processes in an illstructured task using question prompts and peer interactions. Educational Technology Research and Development, 51(1), 21–38.

    Google Scholar 

  • Gibson, D. C., & Webb, M. (2015). Data science in educational assessment. Education and Information Technologies, 20(4), 697–713. https://doi.org/10.1007/s10639-015-9411-7

  • Ifenthaler, D., Greiff, S., & Gibson, D. C. (2018). Making use of data for assessments: harnessing analytics and data science. In J. Voogt, G. Knezek, R. Christensen, & K.-W. Lai (Eds.), International handbook of IT in primary and secondary education (2 ed., pp. 649–663). Springer. https://doi.org/10.1007/978-3-319-71054-9_41

  • Jacobson, M.J. (2000). Problem Solving About Complex Systems: Differences Between Experts and Novices. In B. Fishman & S. O’Connor-Divelbiss (Eds.), Fourth international conference of the learning sciences, pp. 14–21. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Krems, J. (1995). Cognitive flexibility and complex problem solving. In P.A. Frensch & J. Funke (Eds.), Complex problem solving. The European perspective, pp. 201–218. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • GaÅ¡ević, D., Joksimović, S., Eagan, B. R., & Shaffer, D. W. (2019). SENS: Network analytics to combine social and cognitive perspectives of collaborative learning. Computers in Human Behavior, 92(May), 562–577. https://doi.org/10.1016/j.chb.2018.07.003

    Article  Google Scholar 

  • Goldstone, R. L., Pestilli, F., & Börner, K. (2015). Self-portraits of the brain: Cognitive science, data visualization, and communicating brain structure and function. Trends in Cognitive Sciences, 19(8), 462–474. https://doi.org/10.1016/j.tics.2015.05.012

    Article  Google Scholar 

  • Gonthier, G. (2008). Formal proof–the four-color theorem. Notices of the AMS, 55(11), 1382–1393. Retrieved from https://www.ams.org/notices/200811/tx081101382p.pdf

    Google Scholar 

  • Greiff, S., Scheiter, K., Scherer, R., Borgonovi, F., Britt, A., Graesser, A., Kitajima, M., & Rouet, J. F. (2017). Adaptive problem solving. Moving towards a new assessment domain in the second cycle of PIAAC (OECD education working papers, no. 156). Paris: OECD. https://doi.org/10.1787/90fde2f4-en

  • Greiff, S., & Wüstenberg, S. (2014). Assessment with microworlds: Factor structure, invariance, and latent mean comparison of the MicroDYN test. European Journal of Psychological Assessment, 30, 1–11. https://doi.org/10.1027/1015-5759/a000194

    Article  Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2005). The measurement of change: Learning-dependent progression of mental models. Technology, Instruction, Cognition and Learning, 2(4), 317–336.

    Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2011). A longitudinal perspective on inductive reasoning tasks. Illuminating the probability of change. Learning and Instruction, 21(4), 538–549. https://doi.org/10.1016/j.learninstruc.2010.08.004

    Article  Google Scholar 

  • Ifenthaler, D., & Seel, N. M. (2013). Model-based reasoning. Computers & Education, 64, 131–142. https://doi.org/10.1016/j.compedu.2012.11.014

    Article  Google Scholar 

  • Ings, T. C., & Hawes, J. E. (2018). The history of ecological networks. In Ecological networks in the tropics (pp. 15–28). Springer. https://doi.org/10.1007/978-3-319-68228-0_2

    Chapter  Google Scholar 

  • Lester, F. K. (1983). Trends and issues in mathematical problem-solving research. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 229–261). Academic Press.

    Google Scholar 

  • Margulieux, L. (2019). Chapter summary: Mayer & Wittrock (2006) Problem solving | Lauren Margulieux. Retrieved March 22, 2021, from https://laurenmarg.com/2019/04/21/chapter-summary-mayer-wittrock-2006-problem-solving/

  • Mayer, R., & Wittrock, M. (1996). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 47–62). Simon & Schuster Macmillan.

    Google Scholar 

  • Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Otte, E., & Rousseau, R. (2002). Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 28(6), 441–453. https://doi.org/10.1177/016555150202800601

    Article  Google Scholar 

  • Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Englewood Cliffs, NJ: Prentice Hall Press.

    Google Scholar 

  • Seel, N. M., Ifenthaler, D., & Pirnay-Dummer, P. (2009). Mental models and problem solving: Technological solutions for measurement and assessment of the development of expertise. In P. Blumschein, W. Hung, D. H. Jonassen, & J. Strobel (Eds.), Model-based approaches to learning: Using systems models and simulations to improve understanding and problem solving in complex domains (pp. 17–40). Sense Publishers.

    Google Scholar 

  • Shaffer, D. W. (2006). Epistemic frames for epistemic games. Computers & Education, 46(3), 223–234. https://doi.org/10.1016/j.compedu.2005.11.003

    Article  Google Scholar 

  • Shaffer, D., Hatfield, D., Svarovsky, G., Nash, P., Nulty, A., Bagley, E., … Mislevy, R. (2009). Epistemic network analysis: A prototype for 21st-century assessment of learning. International Journal of Learning and Media, 1(2), 33–53.

    Article  Google Scholar 

  • Sharkasi, N. (2010). The doctor will be you now: A case study on medical ethics and role. In K. Schrier & D. Gibson (Eds.), Ethics and game design (pp. 275–290). Hershey, PA: IGI Global.

    Google Scholar 

  • Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Strawhun, B. T. F. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. Journal for Mathematical Behavior, 24, 287–301.

    Article  Google Scholar 

  • Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stanton, J. (2012). An introduction to data science. Syracuse University.

    Google Scholar 

  • Swiecki, Z., & Shaffer, D. W. (2020). ISENS: An integrated approach to combining epistemic and social network analyses. In ACM International conference proceeding series, pp. 305–313. https://doi.org/10.1145/3375462.3375505

  • van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2013.09.012

  • Wertheimer, M. (1959). Productive thinking (Enlarged Ed.). New York: Harper & Row.

    Google Scholar 

  • Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

    Google Scholar 

  • Zawacki-Richter, O., & Latchem, C. (2018). Exploring four decades of research in Computers & Education. Computers & Education, 122, 136–152. https://doi.org/10.1016/j.compedu.2018.04.001

    Article  Google Scholar 

  • Zlatkin-Troitschanskaia, O., Pant, H. A., & Greiff, S. (Eds.). (2019). Assessing generic and domain-specific academic competencies in higher education. Zeitschrift für Pädagogische Psychologie. https://doi.org/10.1024/1010-0652/a000236

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Greiff .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gibson, D., Ifenthaler, D., Greiff, S. (2022). Teaching of General Psychology: Problem Solving. In: Zumbach, J., Bernstein, D., Narciss, S., Marsico, G. (eds) International Handbook of Psychology Learning and Teaching. Springer International Handbooks of Education. Springer, Cham. https://doi.org/10.1007/978-3-030-26248-8_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26248-8_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26248-8

  • Online ISBN: 978-3-030-26248-8

  • eBook Packages: Springer Reference EducationReference Module Humanities and Social SciencesReference Module Education

Publish with us

Policies and ethics