Skip to main content

The Palaeontology of Browsing and Grazing

  • Chapter
  • First Online:
The Ecology of Browsing and Grazing II

Part of the book series: Ecological Studies ((ECOLSTUD,volume 239))

Abstract

Large herbivorous mammals have a long history of adaptation to changing environmental circumstances. Many groups of mammalian herbivores started as omnivores and opportunistic browsers of fruits and other plant parts, later adapting to increasingly specialised leaf browsing, and finally to grazing as open grass-dominated environments spread following climatic cooling and drying during the Neogene. Changes in global climate led to vegetational changes in terrestrial ecosystems, which resulted in changes in the proportions of browsing and grazing species in the ungulate guilds. There is currently a range of proxy methods to assess diets and feeding ecology of large extinct herbivorous mammals, including dental microwear and mesowear analyses and stable isotope analyses. Together these methods have enabled an increasingly diverse and fine-scale understanding of the dietary variation of herbivorous mammals throughout the Cenozoic, providing a more detailed picture than traditional comparative ecomorphology approaches alone. This chapter will provide an up-to-date assessment of the analytical methods of determining the diet of extinct large herbivorous mammal taxa, and provide insights into changes in the assemblages of browsing and grazing mammals and how these relate to changes to climate and the evolution of different plant forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agustí J, Moya-Sola S (1990) Mammal extinctions in the Vallesian (Upper Miocene). In: Kauffman EG (ed) Extinction events in earth history, vol IV. Springer, Berlin, pp 425–432

    Chapter  Google Scholar 

  • Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–734

    Article  CAS  PubMed  Google Scholar 

  • Archer M, Godthelp H, Hand SJ, Megirian D (1989) Fossil mammals of Riversleigh, Northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Aust Zool 25:29–65

    Article  Google Scholar 

  • Archer D, Winguth A, Lea D, Mahowald N (2000) What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys 38:159–189

    Article  CAS  Google Scholar 

  • Bamford MK (2011a) Fossil woods. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context: volume 1: geology, geochronology, paleoecology and paleoenvironment. Springer, Amsterdam, pp 217–134

    Chapter  Google Scholar 

  • Bamford MK (2011b) Fossil leaves, fruits and seeds. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context: volume 1: geology, geochronology, paleoecology and paleoenvironment. Springer, Amsterdam, pp 235–252

    Chapter  Google Scholar 

  • Bargo MS, Toledo N, Vizcaíno SF (2006) Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263

    Article  PubMed  Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75

    Article  CAS  PubMed  Google Scholar 

  • Bartoli G, Hönisch B, Zeebe RE (2011) Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26:PA4213. https://doi.org/10.1029/2010PA002055

    Article  Google Scholar 

  • Beard C (1998) East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bull Carnegie Mus Nat Hist 34:5–39

    Google Scholar 

  • Bernor RL, Semprebon G, Damuth J (2014) Maragheh ungulate mesowear: interpreting paleodiet and paleoecology from a diverse fauna with restricted sample. Ann Zool Fenn 51:201–208

    Article  Google Scholar 

  • Bibi F (2007) Dietary niche partitioning among fossil bovids in late Miocene C3 habitats: consilience of functional morphology and stable isotope analysis. Palaeogeogr Palaeoclimatol Palaeoecol 253:529–538

    Article  Google Scholar 

  • Black KH (2016) Middle Miocene origins for tough-browse dietary specialisations in the koala (Marsupialia, Phascolarctidae) evolutionary tree: description of a new genus and species from the Riversleigh World Heritage Area. Mem Mus Vic 74:255–262

    Article  Google Scholar 

  • Blondel C (1998) Etude morphologique du squelette appendiculaire des ruminants de l’OligoceÁne d’Europe occidentale; implications environnementales. C R Acad Sci 326:527–532

    Google Scholar 

  • Blondel C (2001) The Eocene-Oligocene ungulates from Western Europe and their environment. Palaeogeogr Palaeoclimatol Palaeoecol 168:125–139

    Article  Google Scholar 

  • Boardman GS, Secord R (2013) Stable isotope paleoecology of White River ungulates during the Eocene–Oligocene climate transition in northwestern Nebraska. Palaeogeogr Palaeoclimatol Palaeoecol 375:38–49

    Article  Google Scholar 

  • Boisserie J-R, Lihoreau F (2006) Emergence of Hippopotamidae: new scenarios. C R Palevol 5:749–756

    Article  Google Scholar 

  • Boisserie J-R, Zazzo A, Merceron G, Blondel C, Vignaud P, Likius A, Mackaye HT, Brunet M (2005) Diets of modern and late Miocene hippopotamids: evidence from carbon isotope composition and micro-wear of tooth enamel. Palaeogeogr Palaeoclimatol Palaeoecol 221:153–174

    Article  Google Scholar 

  • Butler K, Louys J, Travouillon K (2014) Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from Southeast Queensland. Palaeogeogr Palaeoclimatol Palaeoecol 408:11–25

    Article  Google Scholar 

  • Butler K, Travouillon KJ, Price GJ, Archer M, Hand SJ (2017) Species abundance, richness and body size evolution of kangaroos (Marsupialia: Macropodiformes) throughout the Oligo-Miocene of Australia. Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2017.08.016

    Book  Google Scholar 

  • Calandra I, Göhlich UB, Merceron G (2008) How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95:831–838

    Article  CAS  PubMed  Google Scholar 

  • Cerling TE (1992) Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr Palaeoclimatol Palaeoecol 97:241–247

    Article  Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J et al (1997) Global change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Cerling TE, Harris JM, Leakey MG (1999) Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120:364–374

    Article  PubMed  Google Scholar 

  • Cerling TE, Mbua E, Kirera FM, Manthi FK, Grine FE, Leakey MG, Sponheimer M, Uno KT (2011) Diet of Paranthropus boisei in the early Pleistocene of East Africa. PNAS 108:9337–9341

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerling TE, Chritz KL, Jablonski NG, Leakey MG, Manthi FK (2013) Diet of Theropithecus from 4 to 1 Ma in Kenya. PNAS 110:10507–10512

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerling TE, Andanje SA, Blumenthal SA, Brown FH, Chritz KL, Harris JM, Hart JA, Kirera FM, Kaleme P, Leakey LN, Leakey MG, Levin NE, Manthi FK, Passey PK, Uno KT (2015) Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. PNAS 112:11467–11472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clauss M, Rössner GE (2014) Old world ruminant morphophysiology, life history, and fossil record: exploring key innovations of a diversification sequence. Ann Zool Fenn 51:80–94

    Article  Google Scholar 

  • Collinson ME (1992) Chapter 22: Vegetational and foristic changes around the Eocene/Oligocene boundary in Western and Central Europe. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Oxford, pp 437–450

    Chapter  Google Scholar 

  • Collinson ME, Hooker JJ (1987) Vegetational and mammalian faunal changes in the early tertiary of Southern England. In: Chaloner WG, Crane PR, Friis EM (eds) The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 259–304

    Google Scholar 

  • Coombs MC (1978) Additional Schizotherium material from China, and a review of Schizotherium dentitions (Perissodactyla, Chalicotheriidae). Am Mus Novit 2647:1–18

    Google Scholar 

  • Croft DA (2016) Horned armadillos and rafting monkeys – the fascinating fossil mammals of South America. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Croft DA, Weinstein D (2008) The first application of mesowear method to endemic South American ungulates (Notoungulata). Palaeogeogr Palaeoclimatol Palaeoecol 269:103–114

    Article  Google Scholar 

  • Damuth J, Janis CM (2011) On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev 86:733–758

    Article  PubMed  Google Scholar 

  • Damuth J, Janis CM (2014) A comparison of observed molar wear rates in extant herbivorous mammals. Ann Zool Fenn 51:188–200

    Article  Google Scholar 

  • Dawson TJ, Dawson L (2006) Evolution of arid Australia and consequences for vertebrates. In: Merrick JR, Archer M, Hickey GM, Lee MSY (eds) Evolution and biogeography of Australasian vertebrates. Auscipub, Sydney, pp 51–70

    Google Scholar 

  • De Franceschi D, Hoorn C, Antoine PO, Cheema IU, Flynn LJ, Lindsay EH, Marivaux L, Metais G, Rajpar R, Welcomme J-L (2008) Floral data from themid-Cenozoicof Central Pakistan. Rev Palaeobot Palynol 150:115–129

    Article  Google Scholar 

  • DeMiguel D, Fortelius M, Azanza B, Morales J (2008) Ancestral feeding state of ruminants reconsidered: earliest grazing adaptation claims a mixed condition for Cervidae. BMC Evol Biol 8:1–13

    Article  Google Scholar 

  • Deng T, Wang X, Fortelius M, Li Q, Wang Y, Tseng ZJ, Takeuchi GT, Sylor JE, Säilä LK, Xie G (2011) Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science 333:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • DeSantis LRG, Field JH, Wroe S, Dodson JR (2017) Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology 43:181–195

    Article  Google Scholar 

  • Domingo L, Prado JL, Alberdi MT (2012) The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quat Sci Rev 55:103–113

    Article  Google Scholar 

  • Erlebe JJ, Greenwood DR (2012) Life at the top of the greenhouse Eocene world - a review of the Eocene flora and vertebrate fauna from Canada’s High Arctic. Geol Soc Am Bull 124:3–23

    Article  Google Scholar 

  • Eronen JT, Puolamaki K, Liu L, Lintulaakso K, Damuth J et al (2010a) Precipitation and large herbivorous mammals II: application to fossil data. Evol Ecol Res 12:235–248

    Google Scholar 

  • Eronen JT, Evans AR, Fortelius M, Jernvall J (2010b) The impact of regional climate to the evolution of mammals: a case study using fossil horses. Evolution 64:398–408

    Article  PubMed  Google Scholar 

  • Eronen JT, Kaakinen A, Liu L-P, Passey BH, Tang H, Zhang Z-Q (2014) Here be dragons: Mesowear and tooth enamel isotopes of the classic Chinese “Hipparion” faunas from Baode, Shanxi Province, China. Ann Zool Fenn 51:227–244

    Article  Google Scholar 

  • Fariña RA (1996) Trophic relationships among Lujanian mammals. Evol Theory 11:125–134

    Google Scholar 

  • Feranec RS (2003) Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29:230–242

    Article  Google Scholar 

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zool Fenn 180:1–76

    Google Scholar 

  • Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novit 3301:1–35

    Article  Google Scholar 

  • Fortelius M, Eronen JT, Jernvall J, Liu L, Pushkina D et al (2002) Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evol Ecol Res 4:1005–1016

    Google Scholar 

  • Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A, Vislobokova I, Zhang Z (2006) Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr Palaeoclimatol Palaeoecol 238:219–227

    Article  Google Scholar 

  • Fortelius M, Zliobaité I, Kaya F, Bibi F, Bobe R, Leakey L, Leakey M, Patterson D, Rannikko J, Werdelin L (2016) An ecometric analysis of the fossil mammal record of the Turkana Basin. Philos Trans R Soc B 371:1–13

    Article  Google Scholar 

  • Foss SE (2007) Family Entelodontidae. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, MD, pp 120–129

    Google Scholar 

  • Franz-Odendaal TA, Lee-Thorp JA, Chinsamy A (2002) New evidence for the lack of C4 grassland expansions during the early Pliocene at Langebaanweg, South Africa. Paleobiology 28:378–388

    Article  Google Scholar 

  • Fraser D, Zybutz T, Lightner E, Theodor J (2014) Ruminant mandibular tooth mesowear: a new scheme for increasing paleoecological sample sizes. J Zool 294:41–48

    Article  Google Scholar 

  • Froehlich DJ (2002) Quo vadis eohippus? The systematics and taxonomy of the early Eocene equids (Perissodactyla). Zool J Linnean Soc 134:141–256

    Article  Google Scholar 

  • Geist V (1998) Deer of the world – their evolution, behaviour, and ecology. Stackpole Books, Mechanicsburg, Pennsylvania

    Google Scholar 

  • Godthelp H, Archer M, Cifelli R, Hand SJ, Gilkeson CF (1992) Earliest known Australian tertiary mammal fauna. Nature 356:514–516

    Article  Google Scholar 

  • Gordon IJ (2003) Browsing and grazing ruminants: are they different beasts? For Ecol Manag 181:13–21

    Article  Google Scholar 

  • Gordon IJ, Prins HHT (2008) The ecology of browsing and grazing, Ecological Studies 195. Springer, Berlin

    Book  Google Scholar 

  • Green JL, Resar NA (2012) The link between dental microwear and feeding ecology in tree sloths and armadillos (Mammalia: Xenarthra). Biol J Linn Soc 107:277–294

    Article  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Article  Google Scholar 

  • Grossman A, Liutkus-Pierce C, Kyongo B, M’Kirera F (2014) New fauna from Loperot contributes to the understanding of early Miocene catarrhine communities. Int J Primatol 35:1253–1274

    Article  Google Scholar 

  • Gunnell GF, Murphey PC, Stucky RK, Townsend KEB, Robinson B, Zonneveld J-P, Bartels WS (2009) Biostratigraphy and biochronology of the latest Wasatchian, Bridgerian, and Uintan North American land mammal “ages”. Mus North Ariz Bull 65:279–330

    Google Scholar 

  • Guthrie DR (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat Sci Rev 20:549–574

    Article  Google Scholar 

  • Harris JM, Cerling TE, Leakey MG, Passey BH (2008) Stable isotope ecology of fossil hippopotamids from the Lake Turkana Basin of East Africa. J Zool 275:323–331

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the Ice Ages. Science 194:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Head MJ (1998) Pollen and dinoflagellates from the Red Crag at Walton-on-the-Naze, Essex: evidence for a mild climatic phase during the early late Pliocene of eastern England. Geol Mag 135:803–817

    Article  Google Scholar 

  • Herbert TD, Lawrence KT, Tzanova A, Cleaveland-Patterson L, Caballero-Gill R, Kelly CS (2016) Late Miocene global cooling and the rise of modern ecosystems. Nat Geosci 9:843–847

    Article  CAS  Google Scholar 

  • Hernesniemi E, Blomstedt K, Fortelius M (2011) Multi-view stereo three-dimensional reconstruction of lower molars of recent and Pleistocene rhinoceroses for mesowear analysis. Palaeontol Electron 14:1–15

    Google Scholar 

  • Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habits of East African ruminants. Mammalia 36:226–240

    Article  Google Scholar 

  • Hooker JJ (2007) Bipedal browsing adaptations of the unusual Late Eocene–earliest Oligocene tylopod Anoplotherium (Artiodactyla, Mammalia). Zool J Linnean Soc 151:609–659

    Article  Google Scholar 

  • Hooker JJ, Collinson ME (2012) Mammalian faunal turnover across the Palaeocene-Eocene boundary in NW Europe: the roles of displacement, community evolution and environment. Austrian J Earth Sci 105:17–28

    Google Scholar 

  • Ilius AW, Gordon IJ (1992) Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions. Oecologia 89:428–434

    Article  Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643

    Article  Google Scholar 

  • Jacobs BF, Pan AD, Scotese CR (2010) A review of the Cenozoic vegetation history of Africa. In: Werdelin L, Sanders WJ (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, CA, pp 57–72

    Chapter  Google Scholar 

  • Janis CM (1976) The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution 30:757–774

    Article  PubMed  Google Scholar 

  • Janis CM (1982) Evolution of horns in ungulates: ecology and paleoecology. Biol Rev 57:261–318

    Article  Google Scholar 

  • Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500

    Article  Google Scholar 

  • Janis CM (1995) Correlation between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 76–98

    Google Scholar 

  • Janis CM (2007) The horse series. In: Regal B (ed) Icons of evolution. Greenwood Press, West-port, CT, pp 257–280

    Google Scholar 

  • Janis CM (2008) An evolutionary history of browsing and grazing ungulates. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing, Ecological Studies 195. Springer, Berlin, pp 21–45

    Chapter  Google Scholar 

  • Janis CM, Fortelius M (1988) On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol Rev 63:197–230

    Article  CAS  PubMed  Google Scholar 

  • Janis CM, Scott KM, Jacobs LL (1998) Evolution of tertiary mammals of North America: volume 1, terrestrial carnivores, ungulates and ungulatelike mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2002) The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeogr Palaeoclimatol Palaeoecol 177:183–198

    Article  Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2004) The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr Palaeoclimatol Palaeoecol 207:371–398

    Article  Google Scholar 

  • Janis CM, Damuth J, Travouillon KJ, Figueirido B, Hand SJ, Archer M (2016) Palaeoecology of Oligo-Miocene macropodoids determined from craniodental and calcaneal data. Mem Mus Vic 74:209–232

    Article  Google Scholar 

  • Joomun SC, Hooker JJ, Collinson ME (2008) Dental wear variation and implications for diet: an example from Eocene perissodactyls (Mammalia). Palaeogeogr Palaeoclimatol Palaeoecol 263:92–106

    Article  Google Scholar 

  • Kahlke R-D (1999) The history of the origin, evolution and dispersal of the late pleistocene Mammuthus-Coelodonta faunal complex in Eurasia (Large Mammals). Rotterdam, the Netherlands

    Google Scholar 

  • Kahlke R-D, Kaiser TM (2011) Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene Stephanorhinus hundsheimensis (Rhinocerotidae, Mammalia). Quat Sci Rev 30:2250–2261

    Article  Google Scholar 

  • Kaiser TM (2004) The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (Upper Miocene) of Southern Germany. Palaeogeogr Palaeoclimatol Palaeoecol 198:381–402

    Article  Google Scholar 

  • Kaiser TM (2009) Anchitherium aurelianense (Equidae, Mammalia): a brachydont “dirty browser” in the community of herbivorous large mammals from Sandelzhausen (Miocene, Germany). Paläontol Z 83:131–140

    Article  Google Scholar 

  • Kaiser TM (2011) Feeding ecology and niche partitioning of Laetoli ungulate faunas. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context: volume 1: geology, geochronology, paleoecology and paleoenvironment. Springer, Dordrecht, pp 329–354

    Chapter  Google Scholar 

  • Kaiser TM, Müller DWH, Fortelius M, Schulz E, Codron D, Clauss M (2013) Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Rev 43:34–46

    Article  Google Scholar 

  • Konidaris GE, Koufos GD, Kostopoulos DS, Merceron G (2016) Taxonomy, biostratigraphy and palaeoecology of Choerolophodon (Proboscidea, Mammalia) in the Miocene of SE Europe – SW Asia: implications for phylogeny and biogeography. J Syst Palaeontol 14:1–27

    Article  Google Scholar 

  • Kovar-Eder J, Jechorek H, Kvaček Z, Parashiv V (2008) The integrated plant record: an essential tool for reconstructing Neogene zonal vegetation in Europe. PALAIOS 23:97–111

    Article  Google Scholar 

  • Kurtén B (1968) Pleistocene mammals of Europe. Aldine, Chicago

    Google Scholar 

  • Kurtén B (1972) The ice age. Hart-Davis, London

    Google Scholar 

  • Kurtén B, Anderson E (1980) Pleistocene mammals of North America. Columbia University Press, New York

    Google Scholar 

  • Lander B (1998) Oreodontoidea. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America: volume 1, terrestrial carnivores, ungulates and ungulatelike mammals. Cambridge University Press, Cambridge, pp 402–425

    Google Scholar 

  • Lee-Thorp J, van der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. S Afr J Sci 83:712–715

    Google Scholar 

  • Lihoreau F, Ducrocq S (2007) Family Anthracotheriidae. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, MD, pp 89–105

    Google Scholar 

  • Lisiecki LE, Raymo ME (2007) Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat Sci Rev 26:56–69

    Article  Google Scholar 

  • Lister AM (2013) The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500:331–334

    Article  CAS  PubMed  Google Scholar 

  • Lister AM, Sher AV, van Essen H, Wei G (2005) The pattern and process of mammoth evolution in Eurasia. Quat Int 126–128:49–64

    Article  Google Scholar 

  • Liu L-P (2001) Eocene suoids (Artiodactyla, Mammalia) from Bose and Yongle basins, China and the classification and evolution of the Paleogene suoids. Vertebrata Pal Asiatica 39:115–128

    Google Scholar 

  • Liu L-P, Eronen JT, Fortelius M (2009) Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeogeogr Palaeoclimatol Palaeoecol 279:201–206

    Article  Google Scholar 

  • Loffredo LF, DeSantis LRG (2014) Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalist Cormohipparion emsliei. Palaeogeogr Palaeoclimatol Palaeoecol 395:42–52

    Article  Google Scholar 

  • Loose HK (1975) Pleistocene Rhinocerotidae of W. Europe with reference to the recent two-horned species of Africa and S.E. Asia. Scr Geol 33:1–59

    Google Scholar 

  • Louys J, Aplin K, Beck RMD, Archer M (2009) Cranial anatomy of Oligo-Miocene koalas (Diprotodontia: Phascolarctidae): stages in the evolution of an extreme leaf-eating specialization. J Vertebr Paleontol 29:981–992

    Article  Google Scholar 

  • Lucas PW, Omar R (2012) New perspectives of tooth wear. Int J Dent 2012. https://doi.org/10.1155/2012/287573

  • Lucas SG, Schoch RM (1998) Tillodontia. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America: volume 1, terrestrial carnivores, ungulates and ungulatelike mammals. Cambridge University Press, Cambridge, pp 268–273

    Google Scholar 

  • Lucas SG, Schoch RM, Williamson TE (1998) Taeniodonta. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America: volume 1, terrestrial carnivores, ungulates and ungulatelike mammals. Cambridge University Press, Cambridge, pp 260–267

    Google Scholar 

  • Lucas PW, van Casteren A, Al-Fadhalan K, Almusallam AS, Henry AG, Michael S, Watzke J, Reed DA, Diekwisch TGH, Strait DS, Atkins AG (2014) The role of dust, grit and phytoliths in tooth wear. Ann Zool Fenn 51:143–152

    Article  Google Scholar 

  • MacFadden BJ (2000) Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu Rev Ecol Syst 31:33–59

    Article  Google Scholar 

  • MacFadden BJ, Wang Y, Cerling TE, Anaya F (1994) South American fossil mammals and carbon isotopes: a 25 million-year sequence from the Bolivian Andes. Palaeogeogr Palaeoclimatol Palaeoecol 107:257–268

    Article  Google Scholar 

  • MacFadden BJ, Cerling TE, Prado J (1996) Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. PALAIOS 11:319–327

    Article  Google Scholar 

  • Madden RH (2015) Hypsodonty in mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Maglio VJ (1973) Origin and evolution of the Elephantidae. Trans Am Philos Soc 63:1–149

    Article  Google Scholar 

  • Mead AJ, Wall WP (1998) Dietary implications of jaw mechanics in the rhinocerotoids Hyracodon and Subhyracodon from Badlands National Park, South Dakota. In: McClelland L (ed) Santucci VL. National Park Service Paleontological Research, National Park Service, pp 18–23

    Google Scholar 

  • Métais G, Chaimanee Y, Jaeger J-J, Ducrocq S (2001) New remains of primitive ruminants from Thailand: evidence of the early evolution of the Ruminantia in Asia. Zool Scr 30:231–248

    Article  Google Scholar 

  • Métais G, Antoine P-O, Marivaux L, Welcomme J-L, Ducrocq S (2003) New artiodactyl ruminant mammal from the late Oligocene of Pakistan. Acta Palaeontol Pol 48:375–382

    Google Scholar 

  • Métais G, Qi T, Guo J, Beard KC (2005) A new bunoselenodont artiodactyl from the Middle Eocene of China and the early record of selenodont artiodactyls in Asia. J Vertebr Paleontol 25:994–997

    Article  Google Scholar 

  • Métais G, Welcomme J-L, Ducrocq S (2009) New lophiomerycid ruminants from the Oligocene of the Bugti Hills (Balochistan, Pakistan). J Vertebr Paleontol 29:231–241

    Article  Google Scholar 

  • Mihlbachler MC (2008) Species taxonomy, phylogeny, and biogeography of the Brontotheriidae (Mammalia: Perissodactyla). Bull Am Mus Nat Hist 311:1–475

    Article  Google Scholar 

  • Mihlbachler MC, Solounias M (2006) Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. J Mamm Evol 13:11–36

    Article  Google Scholar 

  • Mihlbachler MC, Rivals F, Solounias N, Semprebon GM (2011) Dietary change and evolution of horses in North America. Science 331:1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Montanari S, Louys J, Price GJ (2013) Pliocene paleoenvironments of southeastern Queensland, Australia, inferred from stable isotopes of marsupial tooth enamel. PLoS One 8:e66221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan GS, Lucas SG (2003) Mammalian biochronology of Blancan and Irvingtonian (Pliocene and early Pleistocene) faunas from New Mexico. Bull Am Mus Nat Hist 279:269–320

    Article  Google Scholar 

  • Noret J, Tabor NI, Jacobs BF, Sanders WJ, Kappelman J (2012) Stable isotope data from the Chilga Basin, Ethiopia, and their implications for resource partitioning among late Paleogene African endemic mammals. J Vertebr Paleontol 32(Suppl 2):150

    Google Scholar 

  • Novello A, Blondel C, Brunet M (2010) Feeding behavior and ecology of the late Oligocene Moschidae (Mammalia, Ruminantia) from La Milloque (France): evidence from dental microwear analysis. C R Palevol 9:471–478

    Article  Google Scholar 

  • Orliac MJ, Antoine P-O, Roohi G, Welcomme J-L (2010) Suoidea (Mammalia, Cetartiodactyla) from the early Oligocene of the Bugti Hills, Balochistan, Pakistan. J Vertebr Paleontol 30:1300–1305

    Article  Google Scholar 

  • Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environ 66:498–532

    Article  Google Scholar 

  • Passey BH, Eronen JT, Fortelius M (2007) Paleodiets and paleoenvironments of late Miocene gazelles from North China: evidence from stable carbon isotopes. Vertebrata Pal Asiatica 45:118–127

    Google Scholar 

  • Patnaik R (2015) Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and quaternary climate changes: an appraisal in the light of new data. Quat Int 371:232–243

    Article  Google Scholar 

  • Prasad V, Strömberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Prideaux GJ, Ayliffe LK, DeSantis LGR, Schubert BW, Murray PF, Gagan MK, Cerling TE (2009) Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. PNAS 106:11646–11650

    Article  PubMed  PubMed Central  Google Scholar 

  • Prothero DR (1998) Protoceratidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America: volume 1, terrestrial carnivores, ungulates and ungulatelike mammals. Cambridge University Press, Cambridge, pp 431–438

    Google Scholar 

  • Prothero DR (2013) Rhinoceros giants: the paleobiology of indricotheres. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Prothero DR, Manning E, Hanson CB (1986) The phylogeny of the Rhinocerotoidea (Mammalia, Perissodactyla). Zool J Linnean Soc 87:341–366

    Article  Google Scholar 

  • Prothero DR, Guérin C, Manning E (1989) The history of the Rhinocerotoidea. In: Prothero DR, Schoch RM (eds) The evolution of Perissodactyls. Oxford University Press, New York, pp 321–340

    Google Scholar 

  • Pushkina D (2007) The Pleistocene easternmost distribution in Eurasia of the species associated with the Eemian Palaeoloxodon antiquus assemblage. Mammal Rev 37:224–245

    Article  Google Scholar 

  • Raia P, Carotenuto F, Passaro F, Piras P, Fulgione D, Werdelin L, Saarinen J, Fortelius M (2013) Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Cenozoic mammals. Proc R Soc B Biol Sci 280:2012–2244

    Article  Google Scholar 

  • Rasmussen DT, Gutiérrez M (2010) Hyracoidea. In: Werdelin L, Sanders WJ (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, CA, pp 124–146

    Google Scholar 

  • Reguero MA, Candela AM, Cassini GH (2010) Hypsodonty and body size in rodent-like notoungulates. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of gran Barranca: evolution and environmental change through the middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 362–371

    Google Scholar 

  • Retallack GJ (1992) Middle Miocene fossil plants from fort Ternan (Kenya) and evolution of African grasslands. Paleobiology 18:383–400

    Article  Google Scholar 

  • Retallack GJ, Wynn JG, Benefit BR, Mccrossin ML (2002) Paleosols and paleoenvironments of the middle Miocene, Maboko formation, Kenya. J Hum Evol 42:659–703

    Article  PubMed  Google Scholar 

  • Rivals F, Deniaux B (2003) Dental microwear analysis for investigating the diet of an argali population (Ovis ammon antiqua) of mid-Pleistocene age, Caune de l’Arago cave, eastern Pyrenees, France. Palaeogeogr Palaeoclimatol Palaeoecol 193:443–455

    Article  Google Scholar 

  • Rivals F, Deniaux B (2005) Investigation of human hunting seasonality through dental microwear analysis of two Caprinae in late Pleistocene localities in Southern France. J Archaeol Sci 32:1603–1612

    Article  Google Scholar 

  • Rivals F, Lister AM (2016) Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat Sci Rev 146:116–133

    Article  Google Scholar 

  • Rivals F, Solounias N, Mihlbachler MC (2007) Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quat Res:68338–68346

    Google Scholar 

  • Rivals F, Mihlbachler MC, Solounias N, Mol D, Semprebon GM, de Vos J, Kalthoff DC (2010) Palaeoecology of the Mammoth Steppe fauna from the late Pleistocene of the North Sea and Alaska: separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeogr Palaeoclimatol Palaeoecol 286:42–54

    Article  Google Scholar 

  • Rivals F, Semprebon G, Lister A (2012) An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quat Int 255:188–195

    Article  Google Scholar 

  • Rivals F, Mol D, Lacombat F, Lister AM, Semprebon GM (2015) Resource partitioning and niche separation between mammoths (Mammuthus rumanus and Mammuthus meridionalis) and gomphotheres (Anancus arvernensis) in the early Pleistocene of Europe. Quat Int 379:164–170

    Article  Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 99A:279–310

    Google Scholar 

  • Rose KD (1981) Composition and species diversity in Paleocene and Eocene mammal assemblages: an empirical study. J Vertebr Paleontol 1:367–388

    Article  Google Scholar 

  • Rose KD (2006) The beginning of the age of mammals. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Rowan J, Faith JT, Gebru Y, Feagle JG (2015) Taxonomy and paleoecology of fossil Bovidae (Mammalia, Artiodactyla) from the Kibish formation, southern Ethiopia: implications for dietary change, biogeography, and the structure of the living bovid faunas of East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 420:210–222

    Article  Google Scholar 

  • Saarinen J, Karme A (2017) Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – applying a new mesowear approach. Palaeogeogr Palaeoclimatol Palaeoecol 476:42–54

    Article  Google Scholar 

  • Saarinen J, Lister AM (2016) Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J Quat Sci 31:799–808

    Article  Google Scholar 

  • Saarinen J, Boyer AG, Brown JH, Costa DB, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JG, Sibly RM, Stephens PR, Theodor J, Uhen MD, Smith FA (2014) Patterns of body size evolution in Cenozoic land mammals: intrinsic biological processes and extrinsic forcing. Proc R Soc B Biol Sci 281:20132049. https://doi.org/10.1098/rspb.2013.2049

    Article  Google Scholar 

  • Saarinen J, Karme A, Cerling T, Uno K, Säilä L, Kasiki S, Ngene S, Obari T, Mbua E, Manthi FK, Fortelius M (2015) A new tooth wear -based dietary analysis method for Proboscidea (Mammalia). J Vertebr Paleontol 35. https://doi.org/10.1080/02724634.2014.918546

  • Saarinen J, Eronen J, Fortelius M, Seppä H, Lister AM (2016) Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeontol Electron 19.3.32A:1–58. palaeo-electronica.org/content/2016/1567-pleistocene-mammal-ecometrics

    Google Scholar 

  • Samuels JX, Bredehoeft KE, Wallace SC (2018) A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines. PeerJ 6:e4648. https://doi.org/10.7717/peerj.4648

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez B, Prado JL, Alberdi MT (2004) Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30:146–161

    Article  Google Scholar 

  • Sanders WJ, Kappelman J, Rasmussen TD (2004) New large bodied mammals from the late Oligocene site of Chilga, Ethiopia. Acta Palaeontol Pol 49:365–392

    Google Scholar 

  • Sanders WJ, Gheerbrant E, Harris JM, Saegusa H, Delmer C (2010) Proboscidea. In: Werdelin L, Sanders WJ (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, CA, pp 124–146

    Google Scholar 

  • Schmidt CW (2008) Dental microwear analysis of extinct flat-headed peccary (Platygonus compressus) from Southern Indiana. Proc Indiana Acad Sci 117:95–106

    Google Scholar 

  • Scott RS, Ungar PS, Bergstrom TS, Brown CA, Grine FE, Teaford MF, Walker A (2005) Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436:693–695

    Article  CAS  PubMed  Google Scholar 

  • Semprebon GM, Rivals F (2007) Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeogr Palaeoclimatol Palaeoecol 253:332–347

    Article  Google Scholar 

  • Semprebon GM, Rivals F (2010) Trends in the paleodietary habits of fossil camels from the tertiary and quaternary of North America. Palaeogeogr Palaeoclimatol Palaeoecol 295:131–145

    Article  Google Scholar 

  • Semprebon GM, Janis CM, Solounias N (2004) The diets of the Dromomerycidae (Mammalia: Artiodactyla) and their response to Miocene vegetational change. J Vertebr Paleontol 24:427–444

    Article  Google Scholar 

  • Semprebon GM, Sise PJ, Coombs MC (2011) Potential bark and fruit browsing as revealed by stereomicrowear analysis of the peculiar clawed herbivores known as chalicotheres (Perissodactyla, Chalicotherioidea). J Mamm Evol 18:33–55

    Article  Google Scholar 

  • Semprebon GM, Rivals F, Solounias N, Hulbert RC Jr (2016a) Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeogr Palaeoclimatol Palaeoecol 442:110–127

    Article  Google Scholar 

  • Semprebon GM, Tao D, Hasjanova J, Solounias N (2016b) An examination of the dietary habits of Platybelodon grangeri from the Linxia Basin of China: evidence from dental microwear of molar teeth and tusks. Palaeogeogr Palaeoclimatol Palaeoecol 457:109–116

    Article  Google Scholar 

  • Shockey BJ, Anaya F (2011) Grazing in a new late Oligocene mylodontid sloth and a mylodontid radiation as a component of the Eocene-Oligocene faunal turnover and the early spread of grasslands/savannas in South America. J Mamm Evol 18:101–115

    Article  Google Scholar 

  • Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SKM, Evans AR, Fortelius M, Gittleman J, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JK, Saarinen J, Sibly RM, Stephens PR, Theodor J, Uhen MD (2010) The evolution of maximum body size of terrestrial mammals. Science 330:1216–1219

    Article  CAS  PubMed  Google Scholar 

  • Solounias N, Rivals F, Semprebon GM (2010) Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (Late Miocene of Greece). Paleobiology 36:113–136

    Article  Google Scholar 

  • Solounias N, Semprebon GM, Mihlbachler MC, Rivals F (2013) Paleodietary comparisons of ungulates between the late Miocene of China, and Pikermi and Samos in Greece. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology, Columbia University Press, New York, p 676–692

    Chapter  Google Scholar 

  • Solounias N, Tariq M, Hou S, Danowitz M, Harrison M (2014) A new method of tooth mesowear and a test of it on domestic goats. Ann Zool Fenn 51:111–118

    Article  Google Scholar 

  • Stevens MS, Stevens JB (2007) Family Merycoidodontidae. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, pp 157–168

    Google Scholar 

  • Strani F, DeMiguel D, Sardella R, Bellucci L (2015) Paleoenvironments and climatic changes in the Italian Peninsula during the early Pleistocene: evidence from dental wear patterns of the ungulate community of Coste San Giacomo. Quat Sci Rev 121:28–35

    Article  Google Scholar 

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Article  CAS  Google Scholar 

  • Strömberg CAE, McInerney FA (2011) The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology 37:50–71

    Article  Google Scholar 

  • Strömberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA (2013) Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat Commun 4(1478):1–8

    Google Scholar 

  • Stuart AJ (1976) The history of the mammal fauna during the Ipswichian/last interglacial in England. Philos Trans R Soc B 276:221–250

    Article  Google Scholar 

  • Sturm M (1978) Maw contents of an Eocene horse (Propalaeotherium) out of the oil shale of Messel near Darmstadt. In: Kvacek Z, Schaarschmidt F (eds) Advances in angiosperm Palaeobotany, vol 30. Courier Forschungsinstitut, Senckenberg, pp 2–120

    Google Scholar 

  • Sun J, Windley BF (2015) Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology 43:1015–1018

    Article  Google Scholar 

  • Tang Z-H, Ding Z-L (2013) A palynological insight into the Miocene aridification in the Eurasian interior. Palaeoworld 22:77–85

    Article  Google Scholar 

  • Townsend KEB, Croft DA (2008) Diets of notoungulates from the Santa Cruz formation, Argentina: new evidence from enamel microwear. J Vertebr Paleontol 28:217–230

    Article  Google Scholar 

  • Travouillon KJ, Legendre S, Archer M, Hand SJ (2009) Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: implications for Oligo-Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276:24–37

    Article  Google Scholar 

  • Ulbricht A, Maul LC, Schulz E (2015) Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm Biol 80:14–20

    Article  Google Scholar 

  • Ungar PS (2010) Mammal teeth: origin, evolution and diversity. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Ungar PS, Brown CA, Bergstrom TS, Walker A (2003) A quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning 25:189–193

    Google Scholar 

  • Uno KT, Cerling TE, Harris JM, Kunimatsu Y, Leakey MG, Nakatsukasa M, Nakaya H (2011) Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. PNAS 108:6509–6514

    Article  PubMed  PubMed Central  Google Scholar 

  • Urban MA, Nelson DM, Jiménez-Moreno G, Châteauneuf J-J, Pearson A, Hu FS (2010) Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene–Middle Miocene. Geology 38:1091–1094

    Article  CAS  Google Scholar 

  • Valli AF, Palombo MR (2008) Feeding behaviour of middle-size deer from the Upper Pliocene site of Saint-Vallier (France) inferred by morphological and micro/mesowear analysis. Palaeogeogr Palaeoclimatol Palaeoecol 257:106–122

    Article  Google Scholar 

  • Van Asperen E, Kahlke R-D (2015) Dietary variation and overlap in Central and Northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity: “You’ll have to take pot luck!” (proverb). Quat Sci Rev 107:47–61

    Article  Google Scholar 

  • Van Devender TR, McClaran MP (1995) Desert grassland history. In: McClaran MP, Van Devender TR (eds) The desert grassland. The University of Arizona Press, Tucson, Arizona, pp 68–99

    Google Scholar 

  • Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Glob Chang Biol 14:2963–2977

    Article  Google Scholar 

  • Vizcaíno SF (2009) The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Palaeobiology 35:343–366

    Article  Google Scholar 

  • Walker M, Lowe J (2007) Quaternary science 2007: a 50-year retrospective. J Geol Soc 164:1073–1092

    Article  CAS  Google Scholar 

  • Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as an indicator of diet. Science 201:908–910

    Article  CAS  PubMed  Google Scholar 

  • Wall WP (1998) Amynodontidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America: volume 1, terrestrial carnivores, ungulates and ungulatelike mammals. Cambridge University Press, Cambridge, pp 583–588

    Google Scholar 

  • Wang B (1992) The Chinese Oligocene: a preliminary review of mammalian localities and local faunas. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 529–547

    Chapter  Google Scholar 

  • Wang Y, Meng J, Ni X, Li C (2007) Major events in Paleogene mammal radiation in China. Geol J 42:415–430

    Article  Google Scholar 

  • Wang Y, Xu Y, Khawaja S, Passey BH, Zhang C, Wang X, Li Q, Tseng ZJ, Takeuchi GT, Deng T, Xie G (2013) Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett 376:43–53

    Article  CAS  Google Scholar 

  • Wang X, Li Q, Takeuchi GT (2016) Out of Tibet: an early sheep from the Pliocene of Tibet, Protovis himalayensis, genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vertebr Paleontol 36:5, e1169190. https://doi.org/10.1080/02724634.2016.1169190

    Article  Google Scholar 

  • Werdelin L, Sanders WJ (2010) Cenozoic mammals of Africa. University of California Press, Berkeley, CA

    Book  Google Scholar 

  • West RG (1980) The pre-glacial Pleistocene of the Suffolk and Norfolk Coasts. Cambridge University Press, Cambridge

    Google Scholar 

  • Wilde V, Hellmund M (2010) First record of gut contents from a middle Eocene equid from the Geiseltal near Halle (Saale), Sachsen-Anhalt, Central Germany. Palaeobiodivers Palaeoenviron 90:153–162

    Article  Google Scholar 

  • Williams M, Dunkerley D, De Deckker P, Kershaw P, Chappell J (1998) Quaternary environments. Arnold, London

    Google Scholar 

  • Williamson TE, Lucas SG (1992) Meniscotherium (Mammalia, “Condylarthra”) from the Palaeocene-Eocene of Western North America. BullMexico Mus Nat Hist Sci 1:1–75

    Google Scholar 

  • Woodburne MO (2010) The great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodburne MO, Case JA (1996) Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3:121–161

    Article  Google Scholar 

  • Wu Y, Deng T, Ma J, Zhou X, Mao L, Zhang H, Ye J, Wang S-Q (2018) A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae. Sci Rep 8:7640. https://doi.org/10.1038/s41598-018-25909-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  CAS  PubMed  Google Scholar 

  • Zanazzi A, Kohn MJ (2008) Ecology and physiology of White River mammals based on stable isotope ratios of teeth. Palaeogeogr Palaeoclimatol Palaeoecol 257:22–37

    Article  Google Scholar 

  • Zaw K, Meffre S, Takai M, Suzuki H, Burret C, Htike T, Thein ZMM, Tsubamoto T, Egi N, Maung M (2014) The oldest anthropoid primates in SE Asia: Evidence from LA-ICP-MS U–Pb zircon age in the Late Middle Eocene Pondaung formation, Myanmar. Gondwana Res 26:122–131

    Article  CAS  Google Scholar 

  • Zhang H, Wang Y, Janis CM, Goodall RH, Purnell MA (2017) An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quat Int 445:60–70

    Article  Google Scholar 

  • Zhegallo V, Kalandadze N, Shapovalov A, Bessudnova Z, Noskova N, Tesakova E (2005) On the fossil rhinoceros Elasmotherium (including the collections of the Russian Academy of Sciences). Cranium 22:17–40

    Google Scholar 

  • Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS III, Reynolds JF, Chapin MC (1995) Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am Nat 146:765–794

    Article  Google Scholar 

  • Žliobaitė I, Rinne J, Tóth AB, Mechenich M, Liu L, Behrensmeyer AK, Fortelius M (2016) Herbivore teeth predict climatic limits in Kenyan ecosystems. PNAS 45:12751–12756

    Article  CAS  Google Scholar 

  • Žliobaitė I, Tang H, Saarinen J, Fortelius M, Rinne J, Rannikko J (2018) Dental ecometrics of tropical Africa: linking vegetation types and communities of large plant-eating mammals. Evol Ecol Res 19:127–147

    Google Scholar 

Download references

Acknowledgements

I thank Jenny and Antti Wihuri Foundation for funding my work as a post doc researcher in the Natural History Museum of London during this work. I would also like to thank Christine Janis and Iain Gordon for their constructive suggestions which helped me improve this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Saarinen .

Editor information

Editors and Affiliations

Glossary

Cenozoic

the last ca. 66 million years that started from the end-Cretaceous mass extinction and continues today. The Cenozoic is characterized by a warm and humid beginning followed by mostly cooling and drying global climate, which led to the spread of open, arid environments and grasslands. It is also the time when mammals diversified and filled the ecological niches of large terrestrial herbivores.

Neogene

ca. 23–2.6 million years ago, during which climatic cooling and drying led to increasing coverage of grass-dominated open habitats in many parts of the world, driving the evolution of adaptations to grazing in many lineages of herbivorous mammals.

Pleistocene

ca. 2.6 million years to ca. 11,000 years ago, until the present warm-climatic stage. This was the time of the ice ages characterized by strong cyclic variations in climate, environments and the distribution of plants and animals in the northern hemisphere.

Mesowear

dietary analysis method applicable to present and fossil mammals, based on the wear-induced shape of the occlusal surface of molar teeth. It indicates the amount of grass (in relation to browse) in diet.

Microwear

dietary analysis method based on microscopic wear marks on tooth enamel, which reflect the relative amounts of grass, browse, seeds and other dietary items during the last days of an animal’s life.

Bunodont

tooth morphology type where the cusps are separate and not fused or connected by elongated ridges.

Lophodont

tooth morphology type where the cusps are elongated and connected into long cutting ridges (lophs).

Plagiolophodont

derived lophodont tooth morphology where the lophs are folded and fused to form a flat occlusal surface with shearing enamel edges, often supported by extensive dental cement that covers the tooth crown.

Selenodont

tooth morphology type where the cusps have been elongated into crescent-shaped cutting blades. This is the typical tooth morphology of ruminants and camels.

Bilophodont

tooth morphology type where anterior and posterior cusp pairs have been fused into two transverse cutting lophs.

Loxodont

tooth morphology type where the amount of transverse cutting lophs has been multiplied to form an efficient shearing surface with multiple enamel ridges, often supported by extensive dental cement between the lamellae.

Hypsodont

a relatively high tooth crown, as opposed to Brachydont which refers to a relatively short crown.

Perissodactyla

odd-toed ungulates, including horses (Equidae), rhinoceroses (Rhinocerotidae), tapirs (Tapiridae) and many extinct families such as chalicotheres (Chalicotheriidae), brontotheres (Brontotheriidae), paleotheres (Palaeotheriidae), hyracodonts (Hyracodontidae) and amynodonts (Amynodontidae).

Artiodactyla

even-toed ungulates, including ruminants (Ruminantia), camels (Camelidae), pigs (Suidae), peccaries (Tayassuidae), hippopotami (Hippopotamidae) and many extinct families such as anthracotheres (Anthracotheriidae), entelodont (Entelodontidae) and oreodonts (Merycoidodontidae).

Proboscidea

the mammal order that comprises elephants and their fossil relatives

Xenarthra

the mammal order containing sloths, armadillos, anteaters and their fossil relatives such as glyptodonts and ground sloths.

Notoungulata

an extinct order of endemic South American ungulates.

Litopterna

an extinct order of endemic South American ungulates.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saarinen, J. (2019). The Palaeontology of Browsing and Grazing. In: Gordon, I., Prins, H. (eds) The Ecology of Browsing and Grazing II. Ecological Studies, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-25865-8_2

Download citation

Publish with us

Policies and ethics