Skip to main content

Pathophysiology 2: The Role of Platelets in Cancer Biology

  • Chapter
  • First Online:
Book cover Thrombosis and Hemostasis in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 179))

Abstract

For over 100 years, a link has been recognized between thrombosis and cancer. However, whether this was a causal or correlational relationship was debated. It is now well established that cancer and thrombosis are mechanistically related in intricate ways and can directly fuel each other. Here, we present an historical perspective of platelets and how their physiological function in hemostasis can contribute to tumor development and metastasis. This emerging field has garnered great interest as aspirin therapy has been proposed as a prevention strategy for some malignancies. We highlight the advances that have been made, presenting platelets as a key component that supports many of the hallmarks of cancer that have been described and conclude with future directions and studies that are needed to clarify the role of platelets in cancer and solidify platelet modulating therapies within oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebda PA, Alstadt SP, Hileman WT, Eaglstein WH (1986) Support and stimulation of epidermal cell outgrowth from porcine skin explants by platelet factors. Br J Dermatol 115(5):529–541 Epub 1986/11/01

    Article  CAS  PubMed  Google Scholar 

  2. Lynch SE, Nixon JC, Colvin RB, Antoniades HN (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84(21):7696–7700 Epub 1987/11/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–9. Epub 1986/12/25

    Article  Google Scholar 

  4. Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P et al (2017) Platelet first responders in wound response, cancer, and metastasis. Cancer Metastasis Rev 36(2):199–213 Epub 2017/07/22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  7. Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV (2014) Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 33(1):231–269 Epub 2014/04/04

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691 Epub 2017/02/12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61:46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gasic GJ, Gasic TB, Murphy S (1972) Anti-metastatic effect of aspirin. Lancet 2(7783):7932–7933 Epub 1972/10/28

    Google Scholar 

  11. Michelson AD (ed) (2013) Platelets, 3rd edn. Academic Press, New York

    Google Scholar 

  12. Gresele P, Momi S, Malvestiti M, Sebastiano M (2017) Platelet-targeted pharmacologic treatments as anti-cancer therapy. Cancer Metastasis Rev 36(2):331–355 Epub 2017/07/15

    Article  CAS  PubMed  Google Scholar 

  13. Sharma R, Flood VH (2017) Advances in the diagnosis and treatment of Von Willebrand disease. Blood 130(22):2386–2391 Epub 2017/12/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ware J, Ruggeri ZM (2000) Platelet GPIb-IX-V complex. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Oxford Unversity Press, New York, pp 288–291

    Google Scholar 

  15. Lopez JA, Weisman S, Sanan DA, Sih T, Chambers M, Li CQ (1994) Glycoprotein (GP) Ibβ is the critical subunit linking GP α and GP IX in the GP Ib-IX complex. J Biol Chem 269:23716–23721

    CAS  PubMed  Google Scholar 

  16. Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC (1998) Bernard-Soulier syndrome. Blood 91:4397–4418

    CAS  PubMed  Google Scholar 

  17. Ware J, Russell S, Ruggeri ZM (1999) Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome

    Google Scholar 

  18. Kanaji T, Russell S, Ware J (2002) Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome. Blood 100:2102–2107

    Article  CAS  PubMed  Google Scholar 

  19. Kanaji T, Ware J, Okamura T, Newman PJ (2012) GPIbα regulates platelet size by controlling the subcellular localization of filamin. Blood 119:2906–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Williamson D, Pikovski I, Cranmer SL, Mangin P, Mistry N, Domagala T et al (2002) Interaction between platelet glycoprotein Ibα and filamin-1 is essential for glycoprotein Ib/IX receptor anchorage at high shear. J Biol Chem 277:2151–2159

    Article  CAS  PubMed  Google Scholar 

  21. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M et al (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  CAS  PubMed  Google Scholar 

  22. Boulaftali Y, Hess PR, Getz TM, Cholka A, Stolla M, Mackman N et al (2013) Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest 123:908–916

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergmeier W, Chauhan AK, Wagner DD (2008) Glycoprotein Ibα and von Willebrand factor in primary platelet adhesion and thrombus formation: lessons from mutant mice. Thromb Haemost. 99:264–270

    Article  CAS  PubMed  Google Scholar 

  24. Konkle BA, Shapiro SS, Asch AS, Nachman RL (1990) Cytokine-enhanced expression of glycoprotein Ibα in human endothelium. J Biol Chem 265:19833–19838

    CAS  PubMed  Google Scholar 

  25. Beacham DA, Tran LP, Shapiro SS (1997) Cytokine treatment of endothelial cells increases glycoprotein Ibα-dependent adhesion to von Willebrand factor. Blood 89:4071–4077

    CAS  PubMed  Google Scholar 

  26. Konkle BA, Kelly MD, Essex DW, Meloni FJ, Shapiro SS (1992) Characterization of glycoprotein Ibβ in endothelial cells. Blood 80:1451a

    Google Scholar 

  27. Zieger B, Hashimoto Y, Ware J (1997) Alternative expression of platelet glycoprotein Ib(β) mRNA from an adjacent 5’ gene with an imperfect polyadenylation signal sequence. J Clin Invest 99:520–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yagi M, Zieger B, Roth GJ, Ware J (1998) Structure and expression of the human septin gene HCDCREL-1. 212:229–36

    Google Scholar 

  29. Ware J, Martinez C, Zieger B (2008) Platelets and septins. In: Hall Russell EP, Pringle JR (eds) The Septins. Wiley, pp 269–80

    Google Scholar 

  30. Budarf ML, Konkle BA, Ludlow LB, Michaud D, Li M, Yamashiro DJ et al (1995) Identification of a patient with Bernard-Soulier syndrome and a deletion in the DiGeorge/velo-cardio-facial chromosomal region in 22q11.2. Hum Mol Genet 4:763–6

    Article  CAS  PubMed  Google Scholar 

  31. Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero J et al (2007) Platelet glycoprotein Ibα supports experimental lung metastasis. P Natl Acad Sci USA 104:9024–8

    Article  CAS  Google Scholar 

  32. Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J et al (2006) Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA 103:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erpenbeck L, Nieswandt B, Schon M, Pozgajova M, Schon MP (2010) Inhibition of platelet GPIbα and promotion of melanoma metastasis. J Invest Dermatol 130:576–586

    Article  CAS  PubMed  Google Scholar 

  34. Bergmeier W, Rackebrandt K, Schroder W, Zirngibl H, Nieswandt B (2000) Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood 95:886–893

    CAS  PubMed  Google Scholar 

  35. Clemetson KJ, Clemetson JM (2001) Platelet collagen receptors. Thromb Haemostasis 86:189–198

    Article  CAS  Google Scholar 

  36. Kehrel B, Wierwille S, Clemetson KJ, Anders O, Steiner M, Knight CG et al (1998) Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 91:491–499

    CAS  PubMed  Google Scholar 

  37. Madamanchi A, Santoro SA, Zutter MM (2014) α2β1 Integrin. Adv Exp Med Biol 819:41–60 Epub 2014/07/16

    Article  CAS  PubMed  Google Scholar 

  38. Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102:449–461

    Article  CAS  PubMed  Google Scholar 

  39. He L, Pappan LK, Grenache DG, Li Z, Tollefsen DM, Santoro SA et al (2003) The contributions of the α2 and β1 integrin to vascular thrombosis in vivo. Blood 102:3652–3657

    Article  CAS  PubMed  Google Scholar 

  40. Farndale RW (2009) Platelet glycoprotein VI as a mediator of metastasis. J Thromb Haemost 7:1711–1712

    Article  CAS  PubMed  Google Scholar 

  41. Jain S, Russell S, Ware J (2009) Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost 7:1713–1717

    Article  CAS  PubMed  Google Scholar 

  42. Inoue O, Suzuki-Inoue K, McCarty OJ, Moroi M, Ruggeri ZM, Kunicki TJ et al (2006) Laminin stimulates spreading of platelets through integrin α6β1-dependent activation of GPVI. Blood 107:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M et al (2015) Fibrin activates GPVI in human and mouse platelets. Blood 126(13):1601–1608 Epub 2015/08/19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watson SP, Herbert JM, Pollitt AY (2010) GPVI and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost 8:1456–1467

    Article  CAS  PubMed  Google Scholar 

  45. Lowe KL, Navarro-Nunez L, Watson SP (2012) Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 129(Suppl):30–37

    Article  CAS  Google Scholar 

  46. Ramirez NE, Zhang Z, Madamanchi A, Boyd KL, O’Rear LD, Nashabi A et al (2011) The α(2)β(1) integrin is a metastasis suppressor in mouse models and human cancer. J Clin Invest 121(1):226–237 Epub 2010/12/08

    Article  CAS  PubMed  Google Scholar 

  47. Zutter MM (2007) Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol 608:87–100 Epub 2007/11/13

    Article  CAS  PubMed  Google Scholar 

  48. Naci D, Vuori K, Aoudjit F (2015) α2β1 integrin in cancer development and chemoresistance. Semin Cancer Biol 35:145–153 Epub 2015/08/25

    Article  CAS  PubMed  Google Scholar 

  49. Yadav S, Storrie B (2017) The cellular basis of platelet secretion: emerging structure/function relationships. Platelets 28(2):108–118 Epub 2016/12/25

    Article  CAS  PubMed  Google Scholar 

  50. Leader A, Zelikson-Saporta R, Pereg D, Spectre G, Rozovski U, Raanani P et al (2017) The effect of combined aspirin and clopidogrel treatment on cancer incidence. Am J Med 130(7):826–832 Epub 2017/02/19

    Article  CAS  PubMed  Google Scholar 

  51. Kitagawa H, Yamamoto N, Yamamoto K, Tanoue K, Kosaki G, Yamazaki H (1989) Involvement of platelet membrane glycoprotein Ib and glycoprotein IIb/IIIa complex in thrombin-dependent and -independent platelet aggregations induced by tumor cells. Cancer Res 49(3):537–541 Epub 1989/02/01

    CAS  PubMed  Google Scholar 

  52. Zucchella M, Dezza L, Pacchiarini L, Meloni F, Tacconi F, Bonomi E et al (1989) Human tumor cells cultured in vitro activate platelet function by producing ADP or thrombin. Haematologica 74(6):541–545 Epub 1989/11/01

    CAS  PubMed  Google Scholar 

  53. Boukerche H, Berthier-Vergnes O, Penin F, Tabone E, Lizard G, Bailly M et al (1994) Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets. Br J Haematol 87(4):763–772 Epub 1994/08/01

    Article  CAS  PubMed  Google Scholar 

  54. Felding-Habermann B, Habermann R, Saldivar E, Ruggeri ZM (1996) Role of β3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 271:5892–5900

    Article  CAS  PubMed  Google Scholar 

  55. Degen JL, Palumbo JS (2012) Hemostatic factors, innate immunity and malignancy. Thromb Res 129(Suppl 1):1–5 Epub 2012/06/15

    Article  CAS  Google Scholar 

  56. Nieswandt B, Hafner M, Echtenacher B, Mannel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300

    CAS  PubMed  Google Scholar 

  57. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185

    Article  CAS  PubMed  Google Scholar 

  58. Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL et al (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96:3302–3309

    CAS  PubMed  Google Scholar 

  59. Goklaney AK, Murphy JD, Hillegass WB Jr (1998) Abciximab therapy in percutaneous intervention: economic issues in the United States. Am Heart J 135(4):90–97 Epub 1998/04/16

    Article  Google Scholar 

  60. Coller BS (2001) Anti-GPIIb/IIIa drugs: current strategies and future directions. Thromb Haemost 86(1):427–443 Epub 2001/08/07

    CAS  PubMed  Google Scholar 

  61. Wiedmer T, Esmon CT, Sims PJ (1986) Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 68(4):875–880 Epub 1986/10/01

    CAS  PubMed  Google Scholar 

  62. Sandberg H, Bode AP, Dombrose FA, Hoechli M, Lentz BR (1985) Expression of coagulant activity in human platelets: release of membranous vesicles providing platelet factor 1 and platelet factor 3. Thromb Res 39(1):63–79 Epub 1985/07/01

    Article  CAS  PubMed  Google Scholar 

  63. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263(34):18205–18212 Epub 1988/12/05

    CAS  PubMed  Google Scholar 

  64. Abrams CS, Ellison N, Budzynski AZ, Shattil SJ (1990) Direct detection of activated platelets and platelet-derived microparticles in humans. Blood 75(1):128–138 Epub 1990/01/01

    CAS  PubMed  Google Scholar 

  65. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. IntJCancer. 113:752–760

    CAS  Google Scholar 

  67. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q et al (2009) Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114(3):723–732 Epub 2009/04/17

    Article  CAS  PubMed  Google Scholar 

  68. Varki A (2007) Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 110:1723–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gasic GJ, Gasic TB, Galanti N, Johnson T, Murphy S (1973) Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer 11:704–18

    Article  CAS  PubMed  Google Scholar 

  71. Karpatkin S, Pearlstein E, Ambrogis C, Coller BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bakewell SJ, Nestor P, Prasad S, Tomasson MH, Dowland N, Mehrotra M et al (2003) Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc Natl Acad Sci USA 100:14205–14210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jain S, Harris J, Ware J (2010) Platelets: Linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 30:2362–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95:9325–9330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2:1091–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Palumbo JS, Degen JL (2007) Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res 120(Suppl):22–28

    Article  Google Scholar 

  77. Pinedo HM, Verheul HM, D’Amato RJ, Folkman J (1998) Involvement of platelets in tumour angiogenesis? Lancet 352:1775–1777

    Article  CAS  PubMed  Google Scholar 

  78. Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ et al (1997) Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 3:2187–2190

    CAS  PubMed  Google Scholar 

  79. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207

    Article  CAS  PubMed  Google Scholar 

  80. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  81. Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J et al (2012) Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 366:610–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peterson JE, Zurakowski D, Italiano JE Jr, Michel LV, Connors S, Oenick M et al (2012) VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 15:265–273

    Article  CAS  PubMed  Google Scholar 

  83. Mezouar S, Mege D, Darbousset R, Farge D, Debourdeau P, Dignat-George F et al (2014) Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol 41:346–358

    Article  CAS  PubMed  Google Scholar 

  84. Kim HK, Song KS, Chung JH, Lee KR, Lee SN (2004) Platelet microparticles induce angiogenesis in vitro. Br J Haematol 124:376–384

    Article  PubMed  Google Scholar 

  85. Varon D, Shai E (2009) Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med 8:237–241

    PubMed  Google Scholar 

  86. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J et al (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 114:1714–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, et al (2013) Activated platelets can deliver mRNA regulatory Ago2 microRNA complexes to endothelial cells via microparticles. Blood 122(2):253–61

    Article  CAS  PubMed  Google Scholar 

  89. Pan Y, Liang HW, Liu H, Li DH, Chen X, Li LM et al (2014) Platelet-Secreted MicroRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 192(1):437–446

    Article  CAS  PubMed  Google Scholar 

  90. Liang HW, Yan X, Pan Y, Wang YS, Wang N, Li LM, et al (2015) MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol Cancer 14

    Google Scholar 

  91. Donatelli SS, Zhou JM, Gilvary DL, Eksioglu EA, Chen XH, Cress WD et al (2014) TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells. P Natl Acad Sci USA 111(11):4203–4208

    Article  CAS  Google Scholar 

  92. Sadallah S, Schmied L, Eken C, Charoudeh HN, Amicarella F, Schifferli JA (2016) Platelet-derived ectosomes reduce NK cell function. J Immunol 197(5):1663–1671

    Article  CAS  PubMed  Google Scholar 

  93. Laffont B, Corduan A, Rousseau M, Duchez AC, Lee CHC, Boilard E et al (2016) Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemostasis 115(2):311–323

    Article  Google Scholar 

  94. Tang ML, Jiang L, Lin YY, Wu XL, Wang K, He QZ et al (2017) Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget 8(57):97464–97475

    Article  PubMed  PubMed Central  Google Scholar 

  95. Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS, Sheng JT, et al (2017) Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 8

    Google Scholar 

  96. Bruno A, Dovizio M, Tacconelli S, Patrignani P (2012) Mechanisms of the antitumoural effects of aspirin in the gastrointestinal tract. Best Pract Res Clin Gastroenterol 26:e1–e13

    Article  CAS  Google Scholar 

  97. Kaiser J (2012) Will an aspirin a day keep cancer away? Science 337:1471–1473

    Article  CAS  PubMed  Google Scholar 

  98. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee SK (2015) Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest 95:702–717

    Article  CAS  PubMed  Google Scholar 

  99. Kolenich JJ, Mansour EG, Flynn A (1972) Haematological effects of aspirin. Lancet 2:714

    Article  CAS  PubMed  Google Scholar 

  100. Jr WS, Hilgard P (1972) Aspirin and tumour metastasis. Lancet 2:1416–1417

    Google Scholar 

  101. Bowers LW, Maximo IX, Brenner AJ, Beeram M, Hursting SD, Price RS et al (2014) NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res 74:4446–4457

    Article  CAS  PubMed  Google Scholar 

  102. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    Article  CAS  PubMed  Google Scholar 

  103. Rothwell PM, Price JF, Fowkes FG, Zanchetti A, Roncaglioni MC, Tognoni G et al (2012) Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379:1602–1612

    Article  CAS  PubMed  Google Scholar 

  104. Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379:1591–1601

    Article  CAS  PubMed  Google Scholar 

  105. Key NS, Khorana AA, Mackman N, McCarty OJT, White GC, Francis CW et al (2016) Thrombosis in cancer: research priorities identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Can Res 76(13):3671–3675

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aime T. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franco, A.T., Ware, J. (2019). Pathophysiology 2: The Role of Platelets in Cancer Biology. In: Soff, G. (eds) Thrombosis and Hemostasis in Cancer. Cancer Treatment and Research, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-20315-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20315-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20314-6

  • Online ISBN: 978-3-030-20315-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics