Skip to main content

Manufacturing Technology in Rehabilitation Practice: Implications for Its Implementation in Assistive Technology Production

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 975))

Abstract

This study addressed the participation of rehabilitation professionals in the use of Additive Manufacturing to produce assistive technology devices. A literature review based on articles published in scientific journals indexed in the Scopus database was conducted by searching for papers addressing the use of Additive Manufacturing Technologies in the development of orthotic and prosthetic devices in rehabilitation programs. The 46 articles that met the inclusion criteria were analyzed in terms of the participation of the health professionals in the process of design of orthotic and prosthetic devices. The analysis revealed that in most cases the use of 3D printing technologies in the design of assistive devices do not comprise interdisciplinary teams with active participation of rehabilitation professionals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Volpato, N.: Prototipagem rápida: tecnologias e aplicações. Edgard Clucher, São Paulo (2007)

    Google Scholar 

  2. Foggiatto, J.A.: O uso da prototipagem rápida na área médico-odontológica. Revista Tecnologia Humanismo 20(30), 60–68 (2006)

    Google Scholar 

  3. Lichtenberger, J.P., Tatum, P.S., Gada, S., Wyn, M., Ho, V.B., Liacouras, P.: Using 3D printing (additive manufacturing) to produce low-cost simulation models for medical training. Mil. Med. 183(Suppl_1), 73–77 (2018)

    Article  Google Scholar 

  4. Medola, F.O., Fortulan, C.A., Purquerio, B.M., Elui, V.M.C.: A new design for an old concept of wheelchair pushrim. Disabil. Rehabil.: Assistive Technol. 7(3), 234–241 (2012)

    Google Scholar 

  5. Medola, F.O., Paschoarelli, L.C., Silv, D.C., Elui, V.M.C., Fortulan, A.: Pressure on hands during manual wheelchair propulsion: a comparative study with two types of handrim. In: European Seating Symposium, pp. 63–65 (2011)

    Google Scholar 

  6. Medola, F.O., Purquerio, B.M., Elui, V.M.C., Fortulan, C.A.: Conceptual project of a servo-controlled power-assisted wheelchair. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 450–454 (2014)

    Google Scholar 

  7. Lahr, G.J.G., Medola, F.O., Sandnes, F.E., Elui, V.M.C., Fortulan, C.A.: Servomotor assistance in the improvement of manual wheelchair mobility. Stud. Health Technol. Inform. 242, 786–792 (2017)

    Google Scholar 

  8. da Silva, L.A., Medola, F.O., Rodrigues, O.V., Rodrigues, A.C.T., Sandnes, F.E.: Interdisciplinary-based development of user-friendly customized 3D printed upper limb prosthesis. In: Ahram T., Falcão C. (eds.) Advances in Usability, User Experience and Assistive Technology. AHFE 2018. Advances in Intelligent Systems and Computing, vol 794. Springer, Cham (2019)

    Google Scholar 

  9. Sandnes, F.E., Medola, F.O., Berg, A., Rodrigues, O.V., Mirtaheri, P., Terje, G.: Solving the grand challenges together: a Brazil-Norway approach to teaching collaborative design and prototyping of assistive technologies and products for independent living. In: Berg, A., Bohemia, E., Buck, L., Gulden, T., Kovacevic, A., Pavel, N. (eds.) Proceedings of E&PDE 2017 – International Conference on Engineering and Product Design Education. Building Community: Design Education for a Sustainable Future, pp. 122–127. The Design Society (2017)

    Google Scholar 

  10. da Silva, L.A., Medola, F.O., Rodrigues, O.V., Rodrigues, A.C.T., Sandnes, F.E.: Interdisciplinary-based development of user-friendly customized 3D printed upper limb prosthesis. In: International Conference on Applied Human Factors and Ergonomics, pp. 899–908. Springer, Cham (2018)

    Google Scholar 

  11. Zhao, X., Xiao, J., Sun, Y., Zhu, Z., Xu, M., Wang, X., Lin, F., Wang, Y., Wang, J.: Novel 3D printed modular hemipelvic prosthesis for successful hemipelvic arthroplasty: a case study. J. Bionic Eng. 15(6), 1067–1074 (2018)

    Article  Google Scholar 

  12. Zuniga, J.: 3D printed antibacterial prostheses. Appl. Sci. 8(9), 1651 (2018)

    Article  Google Scholar 

  13. Vujaklija, I., Farina, D.: 3D printed upper limb prosthetics. Expert Rev. Med. Devices 15(7), 505–512 (2018)

    Article  Google Scholar 

  14. Lal, H., Patralekh, M.K.: 3D printing and its applications in orthopaedic trauma: a technological marvel. J. Clin. Orthop. Trauma 9(3), 260–268 (2018)

    Article  Google Scholar 

  15. Colpani, A., Fiorentino, A., Ceretti, E.: 3D printing for health and wealth: fabrication of custom-made medical devices through additive manufacturing. In: AIP Conference Proceedings, vol. 1960, no. 1, p. 140006. AIP Publishing (2018)

    Google Scholar 

  16. Maini, L., Sharma, A., Jha, S., Tiwari, A.: Three-dimensional printing and patient-specific pre-contoured plate: future of acetabulum fracture fixation? Eur. J. Trauma Emerg. Surg. 44(2), 215–224 (2018)

    Article  Google Scholar 

  17. Wen, X., Gao, S., Feng, J., Li, S., Gao, R., Zhang, G.: Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. J. Cardiothorac. Surg. 13(1), 4–4 (2018)

    Article  Google Scholar 

  18. Rankin, T.M., Wormer, B.A., Miller, J.D., Giovinco, N.A., Al Kassis, S., Armstrong, D.G.: Image once, print thrice? Three-dimensional printing of replacement parts. Brit. J. Radiol. 90, 20170374 (2018)

    Article  Google Scholar 

  19. Bajaj, D., Madhav, I., Juneja, M., Tuli, R., Jindal, P.: Methodology for stress measurement by transparent dental aligners using strain gauge. World J. Dent. 9(1), 13–18 (2018)

    Google Scholar 

  20. Clark, W.A., Duqum, I., Kowalski, B.J.: The digitally replicated denture technique: a case report. J. Esthetic Restorative Dent. 31, 20–25 (2019)

    Google Scholar 

  21. Yadav, S., Narayan, A.I., Choudhry, A., Balakrishnan, D.: CAD/CAM-Assisted auricular prosthesis fabrication for a quick, precise, and more retentive outcome: a clinical report. J. Prosthodont. 26(7), 616–621 (2017)

    Article  Google Scholar 

  22. Hsieh, T.Y., Dedhia, R., Cervenka, B., Tollefson, T.T.: 3D printing: current use in facial plastic and reconstructive surgery. Curr. Opin. Otolaryngol. Head Neck Surg. 25(4), 291–299 (2017)

    Article  Google Scholar 

  23. Provaggi, E., Leong, J.J., Kalaskar, D.M.: Applications of 3D printing in the management of severe spinal conditions. Proc. Inst. Mech. Eng. [H] 231(6), 471–486 (2017)

    Article  Google Scholar 

  24. Kudelski, R., Dudek, P., Kulpa, M., Rumin, R.: Using reverse engineering and rapid prototyping for patient specific orthoses. In: 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp. 88–90. IEEE (2017)

    Google Scholar 

  25. Wei, H., Wang, X.: Advances in titanium bone implants made by rapid prototyping technology. Chin. J. Tissue Eng. Res. 21(22), 3583–3588 (2017)

    Google Scholar 

  26. Trombetta, R., Inzana, J.A., Schwarz, E.M., Kates, S.L., Awad, H.A.: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 45(1), 23–44 (2017)

    Article  Google Scholar 

  27. Mihaela-Elena, U., Cristian-Vasile, D., Augustin, S., Mihnea-Cosmin, C., Roxana, M.: Design for manufacturing of a hip endo-prosthesis stem, using additive technologies. In: Proceedings of the 30th International Business Information Management Association Conference, IBIMA 2017 - Vision 2020: Sustainable Economic Development, Innovation Management, and Global Growth, pp. 2597–2610 (2017)

    Google Scholar 

  28. Houben, A., Van Hoorick, J., Van Erps, J., Thienpont, H., Van Vlierberghe, S., Dubruel, P.: Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications. Ann. Biomed. Eng. 45(1), 58–83 (2017)

    Article  Google Scholar 

  29. Zanetti, E.M., Aldieri, A., Terzini, M., Calì, M., Franceschini, G., Bignardi, C.: Additively manufactured custom load-bearing implantable devices: grounds for caution. Australas. Med. J. 10(8), 694 (2017)

    Article  Google Scholar 

  30. Thomann, G., Coton, J., Pinto, M.D.G., Veytizou, J., Villeneuve, F.: How 3D printing technologies can contribute into an iterative design process? Case study to hit a drum for Disabled Children. Production 27 (2017)

    Google Scholar 

  31. Han, Q., Qin, Y., Zou, Y., Wang, C., Bai, H., Yu, T., Huang, L., Wang, J.: Novel exploration of 3D printed wrist arthroplasty to solve the severe and complicated bone defect of wrist. Rapid Prototyping J. 23(3), 465–473 (2017)

    Article  Google Scholar 

  32. Branco, L.R.: Colors in 3D. In: Advances in Ergonomics Modeling, Usability and Special Populations, pp. 427–436. Springer, Cham (2017)

    Google Scholar 

  33. Hofmann, M., Burke, J., Pearlman, J., Fiedler, G., Hess, A., Schull, J., Hudson, S.E., Mankoff, J.: Clinical and maker perspectives on the design of assistive technology with rapid prototyping technologies. In: Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 251–256. ACM (2016)

    Google Scholar 

  34. Kalamaras, M., McEniery, P., Thorn, K., Bindra, R.: Rapid prototyping and 3D modeling of osteotomy jigs and drill guides in hand and wrist surgery. Techn. Orthop. 31(3), 164–171 (2016)

    Article  Google Scholar 

  35. Sheth, R., Balesh, E.R., Zhang, Y.S., Hirsch, J.A., Khademhosseini, A., Oklu, R.: Three-dimensional printing: an enabling technology for IR. J. Vasc. Interv. Radiol. 27(6), 859–865 (2016)

    Article  Google Scholar 

  36. Yang, D., Xia, X.: 3D printing of biological materials: progress and clinical application. Chin. J. Tissue Eng. Res. 21(18), 2927–2933 (2017)

    Google Scholar 

  37. Cheng, G.Z., Estepar, R.S.J., Folch, E., Onieva, J., Gangadharan, S., Majid, A.: Three-dimensional printing and 3D slicer: powerful tools in understanding and treating structural lung disease. Chest 149(5), 1136–1142 (2016)

    Article  Google Scholar 

  38. Sing, S.L., An, J., Yeong, W.Y., Wiria, F.E.: Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J. Orthop. Res. 34(3), 369–385 (2016)

    Article  Google Scholar 

  39. Buehler, E., Comrie, N., Hofmann, M., McDonald, S., Hurst, A.: Investigating the implications of 3D printing in special education. ACM Transactions on Accessible Computing (TACCESS) 8(3), 11 (2016)

    Google Scholar 

  40. Besnea, D., Dontu, O., Spanu, A., Gheorghe, G.I., Ganatsios, S.: Rapid prototyping technologies applied for prosthesis tests. Rom. Rev. Precis. Mech. Opt. Mechatron. (50), 45 (2016)

    Google Scholar 

  41. Baronio, G., Harran, S., Signoroni, A.: A critical analysis of a hand orthosis reverse engineering and 3D printing process. Appl. Bionics and Biomech. 2016 (2016)

    Google Scholar 

  42. Pang, J., Zhao, Y., Xiao, Y., Xin, D.: Application of three-dimensional printing technology in spinal surgery. Chin. J. Tissue Eng. Res. 20(4), 577–582 (2016)

    Google Scholar 

  43. Yuan, F., Lv, P., Wang, P., Wang, Y., Wang, Y., Sun, Y.: Custom fabrication of try-in wax complete denture. Rapid Prototyping J. 22(3), 539–543 (2016)

    Article  Google Scholar 

  44. Apaza-Agüero, K., Silva, L., Bellon, O.R.: Mesh segmentation with connecting parts for 3D object prototyping. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 16–20. IEEE (2015)

    Google Scholar 

  45. Hofmann, M.K.: Making connections: modular 3D printing for designing assistive Attachments to prosthetic devices. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 353–354. ACM (2015)

    Google Scholar 

  46. Kumar, P., Singh, R., Ahuja, I.P.S.: Investigations on dimensional accuracy of the components prepared by hybrid investment casting. J. Manuf. Proc. 20, 525–533 (2015)

    Article  Google Scholar 

  47. Liu, H., Weng, Y., Zhang, Y., Xu, N., Tong, J., Wang, C.: Computer assisted design and electron beammelting rapid prototyping metal three-dimensional printing technology for preparation of individualized femoral prosthesis. Chin. J. Reparative Reconstr. Surg. 29(9), 1088–1091 (2015)

    Google Scholar 

  48. Buehler, E., Branham, S., Ali, A., Chang, J.J., Hofmann, M.K., Hurst, A., Kane, S.K.: Sharing is caring: assistive technology designs on thingiverse. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 525–534. ACM (2015)

    Google Scholar 

  49. Stojmenski, A., Chorbev, I., Joksimoski, B., Stojmenski, S.: 3D printing assistive devices. In: International Conference on Mobile Networks and Management, pp. 446–456. Springer, Cham (2014)

    Google Scholar 

  50. Sharma, A.: Rapid prototyping technology for prosthodontics. Int. J. Clin. Dent. 7(4), (2014)

    Google Scholar 

  51. Eltorai, A.E., Nguyen, E., Daniels, A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics 38(11), 684–687 (2015)

    Article  Google Scholar 

  52. Fantini, M., De Crescenzio, F., Ciocca, L., Persiani, F.: Additive manufacturing to assist prosthetically guided bone regeneration of atrophic maxillary arches. Rapid Prototyping J. 21(6), 705–715 (2015)

    Article  Google Scholar 

  53. Laszczak, P., Jiang, L., Bader, D.L., Moser, D., Zahedi, S.: Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications. Med. Eng. Phys. 37(1), 132–137 (2015)

    Article  Google Scholar 

  54. Narra, N., Blanquer, S.B., Haimi, S.P., Grijpma, D.W., Hyttinen, J.: μCT based assessment of mechanical deformation of designed PTMC scaffolds. Clin. Hemorheology Microcirc. 60(1), 99–108 (2015)

    Article  Google Scholar 

  55. Harris, R., Savalani, M.: Medical applications. In: Rapid Manufacturing: An Industrial Revolution for the Digital Age, pp. 175–194. Wiley, Hoboken (2005)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Norwegian Centre for International Cooperation in Education (UTF-2016-long-term/10053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Orsi Medola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Carvalho Filho, I.F.P., Medola, F.O., Sandnes, F.E., Paschoarelli, L.C. (2020). Manufacturing Technology in Rehabilitation Practice: Implications for Its Implementation in Assistive Technology Production. In: Di Nicolantonio, M., Rossi, E., Alexander, T. (eds) Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping. AHFE 2019. Advances in Intelligent Systems and Computing, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-20216-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20216-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20215-6

  • Online ISBN: 978-3-030-20216-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics