Skip to main content

Experimental Evaluation of Subgraph Isomorphism Solvers

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11510))

Abstract

Subgraph Isomorphism (SI) is an NP-complete problem which is at the heart of many structural pattern recognition tasks as it involves finding a copy of a pattern graph into a target graph. In the pattern recognition community, the most well-known SI solvers are VF2, VF3, and RI. SI is also widely studied in the constraint programming community, and many constraint-based SI solvers have been proposed since Ullman, such as LAD and Glasgow, for example. All these SI solvers can solve very quickly some large SI instances, that involve graphs with thousands of nodes. However, McCreesh et al. have recently shown how to randomly generate SI instances the hardness of which can be controlled and predicted, and they have built small instances which are computationally challenging for all solvers. They have also shown that some small instances, which are predicted to be easy and are easily solved by constraint-based solvers, appear to be challenging for VF2 and VF3. In this paper, we widen this study by considering a large test suite coming from eight benchmarks. We show that, as expected for an NP-complete problem, the solving time of an instance does not depend on its size, and that some small instances coming from real applications are not solved by any of the considered solvers. We also show that, if RI and VF3 can solve very quickly a large number of easy instances, for which Glasgow or LAD need more time, they fail at solving some other instances that are quickly solved by Glasgow or LAD, and they are clearly outperformed by Glasgow on hard instances. Finally, we show that we can easily combine solvers to take benefit of their complementarity.

This work has been done in collaboration with Ciaran McCreesh, Patrick Prosser, and James Trimble. In particular, all experiments have been run by Ciaran McCreesh and used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Glasgow is available at https://github.com/ciaranm/glasgow-subgraph-solver.

References

  1. Archibald, B., Dunlop, F., Hoffmann, R., McCreesh, C., Prosser, P., Trimble, J.: Sequential and parallel solution-biased search for subgraph algorithms. In: 16th International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research (2019)

    Google Scholar 

  2. Audemard, G., Lecoutre, C., Samy-Modeliar, M., Goncalves, G., Porumbel, D.: Scoring-based neighborhood dominance for the subgraph isomorphism problem. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 125–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_12

    Chapter  Google Scholar 

  3. Bombieri, N., Bonnici, V., Giugno, R.: Parallel searching on biological networks. In: 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP, pp. 307–314. IEEE (2019)

    Google Scholar 

  4. Bonnici, V., Giugno, R.: On the variable ordering in subgraph isomorphism algorithms. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 193–203 (2017)

    Article  Google Scholar 

  5. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 804–818 (2018)

    Article  Google Scholar 

  6. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: 12th International Joint Conference on Artificial Intelligence (IJCAI), pp. 331–340 (1991)

    Google Scholar 

  7. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  8. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)

    Article  Google Scholar 

  9. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Samuel, E.: Polynomial algorithms for subisomorphism of nD open combinatorial maps. Comput. Vis. Image Underst. (CVIU) 115(7), 996–1010 (2011)

    Article  Google Scholar 

  10. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079 (2003)

    Article  Google Scholar 

  11. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Hoffmann, R., et al.: Observations from parallelising three maximum common (connected) subgraph algorithms. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 298–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_22

    Chapter  Google Scholar 

  13. Knuth, D.E.: The Stanford GraphBase - a platform for combinatorial computing. ACM (1993)

    Google Scholar 

  14. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algorithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_8

    Chapter  Google Scholar 

  15. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Math. Struct. Comput. Sci. 12(4), 403–422 (2002)

    Article  MathSciNet  Google Scholar 

  16. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algorithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_21

    Chapter  MATH  Google Scholar 

  17. Mccreesh, C., Prosser, P., Solnon, C., Trimble, J.: When subgraph isomorphism is really hard, and why this matters for graph databases. J. Artif. Intell. Res. 61, 723–759 (2018)

    Article  MathSciNet  Google Scholar 

  18. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artif. Intell. 174(12–13), 850–864 (2010)

    Article  MathSciNet  Google Scholar 

  19. Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.: On the complexity of submap isomorphism and maximum common submap problems. Pattern Recogn. 48(2), 302–316 (2015)

    Article  Google Scholar 

  20. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  21. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with constraint programming. Constraints 15(3), 327–353 (2010)

    Article  MathSciNet  Google Scholar 

  22. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for subgraph isomorphism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_51

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Solnon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solnon, C. (2019). Experimental Evaluation of Subgraph Isomorphism Solvers. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics