Skip to main content

Applications of Nanoparticles in Wastewater Treatment

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

High-quality water is the most sought-after resource for human survival. Various natural and anthropogenic activities have contributed to groundwater pollution and have affected the quality of drinking water in the past few decades. Release of toxic effluents from the industrial sector is a major source of groundwater pollution. Different conventional methods used for purification of water involve use of adsorbents, reverse osmosis, ion exchange, and electrostatic precipitation, with the disadvantages of high cost, poor recyclability, and low efficiency. Despite progress made in the development of sustainable technologies, their use has been limited, largely because of the limitations of the materials’ properties, including their costs. Use of nanoparticles would help to solve this problem and would address the consequences of the presence of pesticides and heavy metals in water. Nanoparticles possess useful characteristics such as a direct bandgap, a high optical absorption coefficient, a layered structure, tunable band edges for optimized catalysis, low cost, and low toxicity. This review addresses different properties of nanoparticles contributing to water treatment and nanoadsorbents used for removal of numerous pollutants in groundwater purification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe LS, Smith JA, Narkiewicz S, Oyanedel-Craver V, Conaway M, Singo A, Amidou S, Mojapelo P, Brant J, Dillingham R (2014) Ceramic water filters impregnated with silver nanoparticles as a point-of-use water-treatment intervention for HIV-positive individuals in Limpopo Province, South Africa: a pilot study of technological performance and human health benefits. J Water Health 12(2):288–300

    Article  PubMed  Google Scholar 

  • Agarwal S, Sadegh H, Monajjemi M, Hamdy AS, Ali GA, Memar AO, Shahryari-Ghoshekandi R, Tyagi I, Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. J Mol Liq 218:191–197

    Article  CAS  Google Scholar 

  • Ali A, Hira Zafar MZ, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkaim AF, Sadik Z, Mahdi DK, Alshrefi SM, Al-Sammarraie AM, Alamgir FM, Aljeboree AM (2015) Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye. Korean J Chem Eng, 32(12):2456–2462

    Article  CAS  Google Scholar 

  • Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res 55:185–193

    Article  CAS  PubMed  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano-materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55

    Article  CAS  PubMed  Google Scholar 

  • Arbabi M, Hemati S, Amiri M (2015) Removal of lead ions from industrial wastewater: a review of removal methods. Int J Epidemiol Res 2:105–109

    Google Scholar 

  • Azarang M, Shuhaimi A, Yousefi R, Jahromi SP (2015) One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of methylene blue. RSC Adv 5:21888–21896

    Article  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles, Article ID 689419, http://dx.doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612 http://dx.doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. http://dx.doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. http://dx.doi.org/10.3389/fchem.2019.00065

  • Badreddine K, Kazah I, Rekaby M, Awad R (2018) Structural, morphological, optical, and room temperature magnetic characterization on pure and Sm-doped ZnO nanoparticles. J Nanomater 2018:1–11

    Article  CAS  Google Scholar 

  • Berekaa MM (2016) Nanotechnology in wastewater treatment; influence of nanomaterials on microbial systems. Int J Curr Microbiol App Sci 5:713–726

    Article  CAS  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med 2015:1–16

    Article  Google Scholar 

  • Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390

    Article  CAS  PubMed  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  PubMed  Google Scholar 

  • Bogue R (2011) Nanocomposites: a review of technology and applications. Assembly Autom 31:106–112

    Article  Google Scholar 

  • Bokare V, Jung JL, Chang YY, Chang YS (2013) Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: modeling of rate kinetics and congener profile. J Hazard Mater 250:397–402

    Article  PubMed  CAS  Google Scholar 

  • Bollmann AF, Seitz W, Prasse C, Lucke T, Schulz W, Ternes T (2016) Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J Hazard Mater 320:204–215

    Article  CAS  PubMed  Google Scholar 

  • Bonvin F, Jost L, Randin L, Bonvin E, Kohn T (2016) Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res 90:90–99

    Article  CAS  PubMed  Google Scholar 

  • Bazrafshan E, Ahmadabadi M, Mahvi A.H (2013) Reactive Red-120 removal by activated carbon obtained from cumin herb wastes. Fres Environ Bull 22(2a):584–590

    Google Scholar 

  • Central Pollution Control Board (2010) Status of water quality in India 2009. Central Pollution Control Board, Ministry of Environment and Forests, Government of India, New Delhi

    Google Scholar 

  • Chitra K, Annadurai G (2014) Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. Biomed Res Int 2014:725165

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho M, Cates EL, Kim JH (2011) Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res 45:2104–2110

    Article  CAS  PubMed  Google Scholar 

  • Corsi I, Winther-Nielse M, Sethi R, Punta C, Della Torre C, Libralato G, Cinuzzi F (2018) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 154:237–244

    Article  CAS  PubMed  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  PubMed  CAS  Google Scholar 

  • Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014a) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  • Das R, Hamid SBA, Ali ME, Ismail AF, Annuar MSM, Ramakrishna S (2014b) Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354:160–179

    Article  CAS  Google Scholar 

  • Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S (2017) Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 46:6946–7020

    Article  CAS  PubMed  Google Scholar 

  • Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55:9557–9577

    Article  CAS  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:1–14

    Article  CAS  Google Scholar 

  • Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK (2015) Removal of noxious Cr(VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 279:344–352

    Article  CAS  Google Scholar 

  • Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43:493–507

    Article  CAS  PubMed  Google Scholar 

  • Doong RA, Chiang LF (2008) Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites. Wat Sci Tech 58:1985–1992

    Article  CAS  Google Scholar 

  • Dutta D, Thakur D, Bahadur D (2015a) SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater. Chem Eng J 281:482–490

    Article  CAS  Google Scholar 

  • Dutta DK, Borah BJ, Sarmah PP (2015b) Recent advances in metal nanoparticles stabilization into nanopores of montmorillonite and their catalytic applications for fine chemicals synthesis. Cat Rev Sci Eng 57:257–305

    Article  CAS  Google Scholar 

  • Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2018) A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polym Sci 296:1581–1590

    Article  CAS  Google Scholar 

  • Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241

    Article  CAS  Google Scholar 

  • Feng J, Tao Y, Shen X, Jin H, Zhou T, Zhou Y, Lee YI (2019) Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste samples using molecularly imprinted polymer coated quantum dots. Microchem J 144:93–101

    Article  CAS  Google Scholar 

  • Ferreira AM, Roque ÉB, Fonseca FVD, Borges CP (2015) High flux microfiltration membranes with silver nanoparticles for water disinfection. Desalin Water Treat 56:3590–3598

    Article  CAS  Google Scholar 

  • Foguel MV, Pedro NTB, Zanoni MVB, Sotomayor MDPT (2017) Molecularly imprinted polymer (MIP): a promising recognition system for development of optical sensor for textile dyes. Procedia Tech 27:299–300

    Article  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  PubMed  Google Scholar 

  • Gelover S, Gómez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40:3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Ghaedi M, Khajehsharifi H, Yadkuri AH, Roosta M, Asghari A (2012) Oxidized multiwalled carbon nanotubes as efficient adsorbent for bromothymol blue. Toxicol Environ Chem 94:873–883

    Article  CAS  Google Scholar 

  • Ghorbani M, Eisazadeh H, Ghoreyshi AA (2012) Removal of zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk. Iran J Energ Environ 3:83–88

    Google Scholar 

  • Ghosh A, Nayak AK, Pal A (2017) Nano-particle-mediated wastewater treatment: a review. Curr Pollut Rep 3:17–30

    Article  CAS  Google Scholar 

  • Gosavi VD, Sharma S (2014) A general review on various treatment methods for textile wastewater. J Environ Sci Comput Sci Eng Technol 3:29–39

    Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248

    Article  CAS  PubMed  Google Scholar 

  • Guerra F, Attia M, Whitehead D, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23:1760

    Article  PubMed Central  CAS  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1:12–18

    Google Scholar 

  • Gutierrez AM, Dziubla TD, Hilt JZ (2017) Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health 32:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán-Verri GG, Voon LLY (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131

    Article  CAS  Google Scholar 

  • Hajkova P, Spatenka P, Horsky J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process Polym 4:S397–S401

    Article  Google Scholar 

  • Hao C, Feng F, Wang X, Zhou M, Zhao Y, Ge C, Wang K (2015) The preparation of Fe2O3 nanoparticles by liquid phase–based ultrasonic-assisted method and its application as enzyme-free sensor for the detection of H2O2. RSC Adv 5(27):21161–21169

    Article  CAS  Google Scholar 

  • Hou L, Xia J, Li K, Chen J, Wu X, Li X (2013) Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Sci Technol 67:254–260

    Article  CAS  PubMed  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  CAS  PubMed  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Ilankoon N (2014) Use of iron oxide magnetic nanosorbents for Cr(VI) removal from aqueous solutions: a review. J Eng Res Appl 4:55–63

    Google Scholar 

  • Jardón-Maximino N, Pérez-Alvarez M, Sierra-Ávila R, Ávila-Orta CA, Jiménez-Regalado E, Bello AM, González-Morones P, Cadenas-Pliego G (2018) Oxidation of copper nanoparticles protected with different coatings and stored under ambient conditions. J Nanomater 2018:1–8

    Article  CAS  Google Scholar 

  • Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour Technol 204:202–212

    Article  CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Lead J (2016) Properties, sources, pathways, and fate of nanoparticles in the environment. Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity 4:95–117

    Google Scholar 

  • Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Wani SP, Singh AK, Lal K (2012) Wastewater production, treatment and use in India. In: National report presented at the 2nd Regional Workshop on Safe Use of Wastewater in Agriculture, New Delhi, 16–18 May 2012, pp 1–13

    Google Scholar 

  • Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

  • Klačanová K, Fodran P, Šimon P, Rapta P, Boča R, Jorik V, Miglierini M, Kolek E, Čaplovič L (2013) Formation of Fe(0)-nanoparticles via reduction of Fe(II) compounds by amino acids and their subsequent oxidation to iron oxides. J Chem 2013:961629. https://doi.org/10.1155/2013/961629

    Article  CAS  Google Scholar 

  • Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ 8(3):469–472

    Article  CAS  Google Scholar 

  • Kumar A, Sharma G, Naushad M, Singh P, Kalia S (2014) Polyacrylamide/Ni0.02Zn0.98O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dye removal. Ind Eng Chem Res 53:15549–15560

    Article  CAS  Google Scholar 

  • Kumar V, Upadhyay N, Kumar V, Kaur S, Singh J, Singh S, Datta S (2014a) Environmental exposure and health risks of the insecticide monocrotophos—a review. J Biodivers Environ Sci 5:111–120

    Google Scholar 

  • Kumar V, Singh S, Manhas A, Singh J, Singla S, Kaur P (2014b) Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum contaminated soil. Orient J Chem 30(4):1771–1776

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015a) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31(1):357–361

    Article  Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015b) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–815

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N′-phenyl-thiophosphorohydrazidic acid O,S-dimethyl ester from acephate: chemical, biotechnical and computational study. 3 Biotech 6(1):1

    Article  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design, synthesis, and characterization of 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino) acetate as a herbicidal and biological active agent. J Chem Biol 10(4):179–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Kundu S, Wang Y, Xia W, Muhler M (2008) Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 112:16869–16878

    Article  CAS  Google Scholar 

  • Kunduru KR, Nazarkovsky M, Farah S, Pawar RP, Basu A, Domb AJ (2017) Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. In: Grumezescu AM (ed) Water purification. Academic, London, pp 33–74

    Chapter  Google Scholar 

  • Larramendy ML, Soloneski S (2015) Emerging pollutants in the environment: current and further implications. InTechOpen. https://doi.org/10.5772/59332

    Google Scholar 

  • Le AT, Le TT, Tran HH, Dang DA, Tran QH, Vu DL (2012) Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Adv Nat Sci Nanosci Nanotechnol 3:045007

    Article  CAS  Google Scholar 

  • Lee C (2015) Oxidation of organic contaminants in water by iron-induced oxygen activation: a short review. Environ Eng Res 20:205–211

    Article  Google Scholar 

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  PubMed  Google Scholar 

  • Li M, Yin JJ, Wamer WG, Lo YM (2014) Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 22:76–85

    Article  CAS  PubMed  Google Scholar 

  • Liang CZ, Sun SP, Li FY, Ong YK, Chung TS (2014) Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J Membr Sci 469:306–315

    Article  CAS  Google Scholar 

  • Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S, Yu Z (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110

    Article  CAS  Google Scholar 

  • Liga MV, Bryant EL, Colvin VL, Li Q (2011) Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45:535–544

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Ganesh A (2013) Water quality indicators: bacteria, coliphages, enteric viruses. Int J Environ Health Res 23:484–506

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wang D, Wang J, Mendoza C (2011a) Effect of ZnO particles on activated sludge: role of particle dissolution. Sci Total Environ 409:2852–2857

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ma W, Zhang Z (2011b) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7:1504–1520

    Article  CAS  PubMed  Google Scholar 

  • Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:843687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:1–10

    Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Article  PubMed  CAS  Google Scholar 

  • Machado FM, Bergmann CP, Fernandes TH, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub S, Samaras P (2014) Nanoparticles from biowastes and microbes: focus on role in water purification and food preservation. In: Proceedings of the 2nd international conference on sustainable solid waste management, Athens, 12–14 June 2014, pp 1–39

    Google Scholar 

  • Maliyekkal SM, Sreeprasad TS, Krishnan D, Kouser S, Mishra AK, Waghmare UV, Pradeep T (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9:273–283

    Article  CAS  PubMed  Google Scholar 

  • Mauter MS, Zucker I, Perreault F, Werber JR, Kim JH, Elimelech M (2018) The role of nanotechnology in tackling global water challenges. Nat Sustain 1:166

    Article  Google Scholar 

  • Méndez E, González-Fuentes MA, Rebollar-Perez G, Méndez-Albores A, Torres E (2017) Emerging pollutant treatments in wastewater: cases of antibiotics and hormones. J Environ Sci Health A 52:235–253

    Article  CAS  Google Scholar 

  • Moosa AA, Muhsen MF (2017) Ceramic filters impregnated with silver nanoparticles for household drinking water treatment. Am J Mater Sci 7:232–239

    Google Scholar 

  • Mostafaii G, Chimehi E, Gilasi H, Iranshahi L (2017) Investigation of zinc oxide nanoparticles effects on removal of total coliform bacteria in activated sludge process effluent of municipal wastewater. J Environ Sci Technol 10:49–55

    CAS  Google Scholar 

  • Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168:806–812

    Article  CAS  PubMed  Google Scholar 

  • Nadafi K, Mesdaghinia A, Nabizadeh R, Younesian M, Rad MJ (2011) The combination and optimization study on RB29 dye removal from water by peroxy acid and single-wall carbon nanotubes. Desalin Water Treat 27:237–242

    Article  CAS  Google Scholar 

  • Naidoo S, Olaniran AO (2013) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11:249–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nassar NN (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. In: Bhatnagar A (ed) Application of adsorbents for water pollution control. Bentham Science, Sharjah, pp 81–118

    Chapter  Google Scholar 

  • Ni Y, Jin L, Zhang L, Hong J (2010) Honeycomb-like Ni@C composite nanostructures: synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions. J Mater Chem 20:6430–6436

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  • Oller I, Miralles-Cuevas S, Aguera A, Malato S (2018) Monitoring and removal of organic micro-contaminants by combining membrane technologies with advanced oxidation processes. Curr Org Chem 22:1103–1119

    Article  CAS  Google Scholar 

  • Ozmen M, Can K, Arslan G, Tor A, Cengeloglu Y, Ersoz M (2010) Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254:162–169

    Article  CAS  Google Scholar 

  • Panahi Y, Mellatyar H, Farshbaf M, Sabet Z, Fattahi T, Akbarzadehe A (2018) Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment. Mater Today Proc 5:15550–15558

    Article  CAS  Google Scholar 

  • Pande S, Singh BP, Mathur RB, Dhami TL, Saini P, Dhawan SK (2009) Improved electromagnetic interference shielding properties of MWCNT–PMMA composites using layered structures. Nanoscale Res Lett 4:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  CAS  Google Scholar 

  • Peiris MK, Gunasekara CP, Jayaweera PM, Arachchi ND, Fernando N (2017) Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem Inst Oswaldo Cruz 112:537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, http://dx.doi.org/10.1155/2014/963961

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Thirugnanasanbandham K (2019) Advances Research on Nanotechnology for Water Technology. Springer International Publishing https://www.springer.com/us/book/9783030023805

    Google Scholar 

  • Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

    Google Scholar 

  • Puay NQ, Qiu G, Ting YP (2015) Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor. J Clean Prod 88:139–145

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rahimi MR, Mosleh S (2018) Intensification of textile wastewater treatment processes. In: ul‐Islam S, Butola BS (eds) Advanced textile engineering materials. Scrivener, Salem, pp 329–387. https://doi.org/10.1002/9781119488101.ch9

    Chapter  Google Scholar 

  • Rana N, Ghosh KS, Chand S, Gathania AK (2018) Investigation of ZnO nanoparticles for their applications in wastewater treatment and antimicrobial activity. Indian J Pure Appl Phys 56(1):19–25

    Google Scholar 

  • Ranade VV, Bhandari VM (2014) Industrial wastewater treatment, recycling and reuse. Butterworth-Heinemann, Oxford

    Book  Google Scholar 

  • Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: applications of TiO2–SiO2 mixed oxide materials. J Nanomater 2014:617405. https://doi.org/10.1155/2014/617405

    Article  CAS  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011a) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Ren Y, Yan N, Wen Q, Fan Z, Wei T, Zhang M, Ma J (2011b) Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J 175:1–7

    Article  CAS  Google Scholar 

  • Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J, Welle P (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4:767–781

    Article  CAS  Google Scholar 

  • Rudakiya DM, Pawar K (2017) Bactericidal potential of silver nanoparticles synthesized using cell-free extract of Comamonas acidovorans: in vitro and in silico approaches. 3 Biotech 7:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Sa RM, Premalatha M (2016) Applications of nanotechnology in waste water treatment: a review. Imp J Interdiscip Res 2(11):1500–1511

    Google Scholar 

  • Sadhu SD, Garg M, Meena PL (2018) Nanotechnology based separation systems for sustainable water resources. In: Mishra AK, Hussain CM (eds) Nanotechnology for sustainable water resources. Scrivener, Beverly, pp 523–558

    Chapter  Google Scholar 

  • Saharan P, Chaudhary GR, Mehta SK, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. J Nanosci Nanotechnol 14:627–643

    Article  CAS  PubMed  Google Scholar 

  • Sahu O (2014) Reduction of organic and inorganic pollutant from waste water by algae. Int Lett Nat Sci 8:1–8

    Google Scholar 

  • Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691:6–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears K, Dumée L, Schütz J, She M, Huynh C, Hawkins S, Duke M, Gray S (2010) Recent developments in carbon nanotube membranes for water purification and gas separation. Materials 3:127–149

    Article  CAS  PubMed Central  Google Scholar 

  • Seo Y, Hwang J, Kim J, Jeong Y, Hwang MP, Choi J (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomedicine 9:4621

    PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423

    Article  CAS  PubMed  Google Scholar 

  • Shirmardi M, Mahvi AH, Mesdaghinia A, Nasseri S, Nabizadeh R (2013) Adsorption of acid red18 dye from aqueous solution using single-wall carbon nanotubes: kinetic and equilibrium. Desalin Water Treat 51:6507–6516

    Article  CAS  Google Scholar 

  • Sidhu GK, Singh S, Kumar V, Datta S, Singh D, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit Rev Environ Sci Technol. https://doi.org/10.1007/s00128990044

  • Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2017a) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16(1):211–237. https://doi.org/10.1007/s10311-017-0665-8

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017b) Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech 7(4):262. https://doi.org/10.1007/s13205-017-0900-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Gottschalk F, Hungerbuhler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  PubMed  Google Scholar 

  • Sun A, Chai J, Xiao T, Shi X, Li X, Zhao Q, Li D, Chen J (2018) Development of a selective fluorescence nanosensor based on molecularly imprinted–quantum dot optosensing materials for saxitoxin detection in shellfish samples. Sensors Actuators B Chem 258:408–414

    Article  CAS  Google Scholar 

  • Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010

    Article  CAS  Google Scholar 

  • Tsarev S, Collins RN, Fahy A, Waite TD (2016) Reduced uranium phases produced from anaerobic reaction with nanoscale zerovalent iron. Environ Sci Technol 50:2595–2601

    Article  CAS  PubMed  Google Scholar 

  • Usmania MA, Khan I, Bhatd AH, Pillaie RS, Ahmadf N, Haafizg MM, Ovesh M (2017) Current trend in the application of nanoparticles for waste water treatment and purification: a review. Curr Org Synth 14:1–21

    Article  Google Scholar 

  • Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291

    Article  CAS  PubMed  Google Scholar 

  • Visa M, Carcel RA, Andronic L, Duta A (2009) Advanced treatment of wastewater with methyl orange and heavy metals on TiO2, fly ash and their mixtures. Catal Today 144:137–142

    Article  CAS  Google Scholar 

  • Volder DMF, Tawfick SH, Baughman RH, Hart JA (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  CAS  Google Scholar 

  • Vuković GD, Marinković AD, Škapin SD, Ristić MĐ, Aleksić R, Perić-Grujić AA, Uskoković PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865

    Article  CAS  Google Scholar 

  • Wang SG, Gong WX, Liu XW, Yao YW, Gao BY, Yue QY (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–23

    Article  CAS  Google Scholar 

  • Wang Z, Wu D, Wu G, Yang N, Wu A (2013) Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. J Hazard Mater 244:621–627

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Gao H, Chen M, Xu X, Wang X, Pan C, Gao J (2016a) Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl Surf Sci 360:840–848

    Article  CAS  Google Scholar 

  • Wang Z, Shan Y, Xu L, Wu G, Lu X (2016b) Determination of the azo dye, sunset yellow, using carbon paste electrode modified with molecularly imprinted polymer. Indian J Chem Sect A Inorg Phys Theor Anal 55(12):1458–1464

    Google Scholar 

  • Wang MM, Wang J, Cao R, Wang SY, Du H (2017) Natural transformation of zinc oxide nanoparticles and their cytotoxicity and mutagenicity. J Nanomater 2017:1–12

    Google Scholar 

  • Wu Y-Y, Xiong Z-H (2016) Multi-walled carbon nanotubes and powder-activated carbon adsorbents for the removal of nitrofurazone from aqueous solution. J Dispers Sci Technol 37:613–624

    Article  CAS  Google Scholar 

  • Xie G, Xi P, Liu H, Chen F, Huang L, Shi Y, Hou F, Zeng Z, Shao C, Wang J (2012) A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem 22:1033–1039

    Article  CAS  Google Scholar 

  • Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Yin XB (2017) CoFe2O4@MIL-100 (Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci Rep 7:40955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang X, Kang Q, Li J, Shen D, Chen L (2017) One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environ Sci Nano 4:493–502

    Article  CAS  Google Scholar 

  • Zan L, Fa W, Peng T, Gong ZK (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J Photochem Photobiol B 86:165–169

    Article  CAS  PubMed  Google Scholar 

  • Zare K, Sadegh H, Shahryari-Ghoshekandi R, Maazinejad B, Ali V, Tyagi I, Agarwal S, Gupta VK (2015) Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: kinetic, equilibrium studies and its comparison with other adsorbents. J Mol Liq 212:266–271

    Article  CAS  Google Scholar 

  • Zhang XX, Zhu CC (2006) Field-emission lighting tube with CNT film cathode. Microelectron J 37:1358–1360

    Article  CAS  Google Scholar 

  • Zhang J, Wang H, Xiao Y, Tang J, Liang C, Li F, Dong H, Xu W (2017) A simple approach for synthesizing of fluorescent carbon quantum dots from tofu wastewater. Nanoscale Res Lett 12:611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao YG, Shen HY, Pan SD, Hu MQ, Xia QH (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions. J Mater Sci 45:5291–5301

    Article  CAS  Google Scholar 

  • Zhao G, Li J, Ren X, Chen C, Wang X (2011a) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011b) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40:10945–10952

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nano 5:2054–2130

    CAS  Google Scholar 

  • Zheng X, Wu R, Chen Y (2011) Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ Sci Technol 45:2826–2832

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Shen ZP, Shi L, Cheng R, Yuan DH (2017) Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. Catalysts, 7(8):224.

    Article  CAS  Google Scholar 

  • Zhou Y, Qu ZB, Zeng Y, Zhou T, Shi G (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron 52:317–323

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Huo D, Goines S, Yang TH, Lyu Z, Zhao M, Gilroy KD, Wu Y, Hood ZD, Xie M, Xia Y (2018a) Enabling complete ligand exchange on the surface of gold nanocrystals through the deposition and then etching of silver. J Am Chem Soc 140(38):11898–11901. https://doi.org/10.1021/jacs.8b06464

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y (2018b) Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 47:2298–2321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Kumar, V., Romero, R., Sharma, K., Singh, J. (2019). Applications of Nanoparticles in Wastewater Treatment. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_17

Download citation

Publish with us

Policies and ethics