Skip to main content

RNase H: Specificity, Mechanisms of Action, and Antiviral Target

  • Protocol
Human Retroviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1087))

Abstract

The Ribonuclease (RNase) H is one of the four enzymes encoded by all retroviruses, including HIV. Its main activity is the hydrolysis of the RNA moiety in RNA–DNA hybrids. The RNase H ribonuclease is essential in the retroviral life cycle, since it generates and removes primers needed by the Reverse Transcriptase (RT) for initiation of DNA synthesis. Retroviruses lacking RNase H activity are noninfectious. Despite its importance, RNase H is the only enzyme of HIV not yet targeted by antiretroviral therapy.

Here, we describe functions and mechanisms of RNase H during the HIV life cycle and describe a cleavage assay, which is suitable to determine RNase H activity in samples of various kinds. In this assay, an artificial, fluorescence-labeled RNA–DNA hybrid is cleaved in vitro by an RT/RNase H enzyme. Cleavage products are analyzed by denaturing polyacrylamide gel electrophoresis (PAGE). This assay may be used to detect the RNase H, assess the effect of inhibitors, or even activators, of the RNase H, as we have described, as candidates for novel antiretroviral agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moelling K, Bolognesi DP, Bauer H et al (1971) Association of the viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nat New Biol 234:240–243

    Article  CAS  Google Scholar 

  2. Hansen J, Schulze T, Mellert W et al (1988) Identification and characterization of HIV-specific RNase H by monoclonal antibody. EMBO J 7:239–243

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  CAS  PubMed  Google Scholar 

  4. Wöhrl B, Moelling K (1990) Interaction of HIV-1 RNase H with polypurine tract containing RNA-DNA hybrids. Biochem 29: 10141–10147

    Article  Google Scholar 

  5. Nowotny M (2009) Retroviral integrase superfamily: the structural perspective. EMBO Rep 10:144–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Moelling K (1974) Reverse transcriptase and RNase H: present in a murine virus and in both subunits of an avian virus. Cold Spring Harb Symp Quant Biol 39:969–973

    Article  Google Scholar 

  7. Keller W, Crouch R (1972) Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. Proc Natl Acad Sci U S A 69:3360–3364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11: 1187–1197

    Article  CAS  PubMed  Google Scholar 

  9. Wöhrl B, Volkmann S, Moelling K (1991) Mutations of a conserved residue within HIV-1 ribonuclease H affects its exo- and endonuclease activities. J Mol Biol 220:801–818

    Article  PubMed  Google Scholar 

  10. Volkmann S, Wöhrl BM, Tisdale M et al (1993) Enzymatic analysis of two HIV-1 reverse transcriptase mutants with mutations in carboxyl-terminal amino acid residues conserved among retroviral ribonucleases H. J Biol Chem 268:2674–2683

    CAS  PubMed  Google Scholar 

  11. Volkmann S, Jendis J, Frauendorf A et al (1995) Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA. Nucl Acids Res 23:1204–1212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sarafianos SG, Das K, Tantillo C et al (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 20:1449–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Moelling K (1974) Characterization of Reverse Transcriptase and RNase H from Friend murine leukemia virus. Virology 62:46–59

    Article  CAS  PubMed  Google Scholar 

  14. Summers J, Mason WS (1982) Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29:403–415

    Article  CAS  PubMed  Google Scholar 

  15. Pfeiffer P, Hohn T (1983) Involvement of reverse transcription in the replication of cauliflower mosaic virus: a detailed model and test of some aspects. Cell 33:781–789

    Article  CAS  PubMed  Google Scholar 

  16. Neumann-Haefelin D, Rethwilm A, Bauer G et al (1983) Characterization of a foamy virus isolated from Cercopithecus aethiops lymphoblastoid cells. Med Microbiol Immunol 172:75–86

    Article  CAS  PubMed  Google Scholar 

  17. Ma BG, Chen L, Ji HF et al (2008) Characters of very ancient proteins. Biochem Biophys Res Commun 366:607–611

    Article  CAS  PubMed  Google Scholar 

  18. Kogoma, T., Foster, P.L. (1998) Physiological functions of E. coli RNase HI. In Ribonucleases H, Crouch, R.J., Toulme, J.J. (Eds), pp 39–66. Paris, France: INSERM

    Google Scholar 

  19. Tisdale M, Schulze T, Larder BA et al (1991) Mutations within the RNase H domain of HIV-1 reverse transcriptase abolish virus infectivity. J Gen Virol 72:59–66

    Article  CAS  PubMed  Google Scholar 

  20. Kwok T, Heinrich J, Jung-Shiu J et al (2009) Reduction of gene expression by a hairpin-loop structured oligodeoxynucleotide: alternative to siRNA and antisense. Biochim Biophys Acta 1790:1170–1178

    Article  CAS  PubMed  Google Scholar 

  21. Rausch JW, Le Grice SF (2004) “Binding, bending and bonding”: polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. Int J Biochem Cell Biol 36:1752–1766

    Article  CAS  PubMed  Google Scholar 

  22. Moelling K, Abels S, Jendis J et al (2006) Silencing of HIV by hairpin-loop-structured DNA oligonucleotide (siDNA). FEBS Lett 580:3545–3550

    Article  CAS  PubMed  Google Scholar 

  23. Heinrich J, Mathur S, Matskevich AA et al (2009) Oligonucleotide-mediated retroviral RNase H activation leads to reduced HIV-1 titer in patient-derived plasma. AIDS 23: 213–221

    Article  CAS  PubMed  Google Scholar 

  24. Jendis J, Strack B, Moelling K (1998) Inhibition of replication of drug-resistant HIV type 1 isolates by polypurine tract-specific oligodeoxynucleotide TFO A. AIDS Res Hum Retroviruses 14:999–1005

    Article  CAS  PubMed  Google Scholar 

  25. Matskevich AA, Ziogas A, Heinrich J et al (2006) Short partially double-stranded oligodeoxynucleotide induces reverse transcriptase/RNase H-mediated cleavage of HIV RNA and contributes to abrogation of infectivity of virions. AIDS Res Hum Retroviruses 22: 1220–1230

    Article  CAS  PubMed  Google Scholar 

  26. Giovannangeli C, Hélène C (1997) Progress in developments of triplex-based strategies. Antisense Nucleic Acid Drug Dev 7:413–421

    Article  CAS  PubMed  Google Scholar 

  27. ten Asbroek AL, van Groenigen M, Nooij M et al (2002) The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides. Eur J Biochem 269: 583–592

    Article  PubMed  Google Scholar 

  28. Crow YJ, Leitch A, Hayward BE et al (2006) Mutations in genes encoding ribonucleases H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat Genet 38:910–916

    Article  CAS  PubMed  Google Scholar 

  29. Cerritelli SM, Frovola EG, Feng C et al (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11:807–815

    Article  CAS  PubMed  Google Scholar 

  30. Good L (2003) Translation repression by antisense sequences. Cell Mol Life Sci 60:854–861

    CAS  PubMed  Google Scholar 

  31. Song JJ, Smith SK, Hannon GJ et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434–1437

    Article  CAS  PubMed  Google Scholar 

  32. Moelling K, Matskevich A, Jung J-S (2006) Relationship between retroviral replication and RNA interference machineries. Cold Spring Harb Symp on Quant Biol 71:365–368

    Article  CAS  Google Scholar 

  33. Wang Y, Juranek S, Li H (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chung S, Himmel DM, Jiang JK et al (2011) Synthesis, activity, and structural analysis of novel α-hydroxytropolone inhibitors of human immunodeficiency virus reverse transcriptaseassociated ribonuclease H. J Med Chem 54:4462–4474

    Google Scholar 

  35. Nakagawa Y, Tayama K (1998) Mechanism of mitochondrial dysfunction and cytotoxicity induced by tropolones in isolated rat hepatocytes. Chem Biol Interact 116:45–60

    Article  CAS  PubMed  Google Scholar 

  36. Klumpp K, Hang JQ, Rajendran S et al (2003) Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors. Nucleic Acids Res 31:6852–6859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Shaw-Reid CA, Munshi V, Graham P et al (2003) Inhibition of HIV-1 ribonuclease H by a novel diketo acid, 4-[5-(benzoylamino)thien-2-yl]-2,4-dioxobutanoic acid. J Biol Chem 278:2777–2780

    Article  CAS  PubMed  Google Scholar 

  38. Budihas SR, Gorshkova I, Gaidamakov S et al (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucleic Acids Res 33:1249–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wendeler M, Lee HF, Bermingham A et al (2008) Vinylogous ureas as a novel class of inhibitors of reverse transcriptase-associated ribonuclease H activity. ACS Chem Biol 3:635–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Chung S, Wendeler M, Rausch JW et al (2010) Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H. Antimicrob Agents Chemother 54:3913–3921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lansdon EB, Liu Q, Leavitt SA et al (2011) Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors. Antimicrob Agents Chemother 55:2905–2915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686

    CAS  PubMed  Google Scholar 

  43. Matzen K, Elzaouk L, Matskevich AA et al (2007) RNase H-mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Nat Biotechnol 25:669–674

    Article  CAS  PubMed  Google Scholar 

  44. Wittmer-Elzaouk L, Jung-Shiu J, Heinrich J et al (2009) Retroviral self-inactivation in the mouse vagina induced by short DNA. Antiviral Res 82:22–28

    Article  CAS  PubMed  Google Scholar 

  45. Heinrich J, Schols D, Moelling K (2011) A short hairpin loop-structured oligodeoxynucleotide targeting the virion-associated RNase H of HIV inhibits HIV production in cell culture and in huPBL-SCID mice. Intervirology 55:242–246

    Google Scholar 

  46. Simpson, R.J. (2002) Proteins and Proteomics. A Laboratory Manual. p. 177. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  47. Loya S, Hizi A (1993) The interaction of illimaquinone, a selective inhibitor of the RNase H activity, with the reverse transcriptases of human immunodeficiency and murine leukemia retroviruses. J Biol Chem 268: 9323–9328

    CAS  PubMed  Google Scholar 

  48. Volkmann S, Dannull J, Moelling K (1993) The polypurine tract, PPT, of HIV as target for antisense and triple-helix-forming oligonucleotides. Biochimie 75:71–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KM gratefully acknowledges the support of this work by the Institute for Advanced Study at Princeton, USA. FB would like to thank Prof. Peter H. Seeberger (Max Planck Institute of Colloids and Interfaces) for his generous support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moelling, K., Broecker, F., Kerrigan, J.E. (2014). RNase H: Specificity, Mechanisms of Action, and Antiviral Target. In: Vicenzi, E., Poli, G. (eds) Human Retroviruses. Methods in Molecular Biology, vol 1087. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-670-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-670-2_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-669-6

  • Online ISBN: 978-1-62703-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics