Skip to main content

Three-Dimensional Cultures of Mouse Mammary Epithelial Cells

  • Protocol
  • First Online:
Epithelial Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 945))

Abstract

The mammary gland is an ideal “model organism” for studying tissue specificity and gene expression in mammals: it is one of the few organs that develop after birth and it undergoes multiple cycles of growth, differentiation and regression during the animal’s lifetime in preparation for the important function of lactation. The basic “functional differentiation” unit in the gland is the mammary acinus made up of a layer of polarized epithelial cells specialized for milk production surrounded by myoepithelial contractile cells, and the two-layered structure is surrounded by basement membrane. Much knowledge about the regulation of mammary gland development has been acquired from studying the physiology of the gland and of lactation in rodents. Culture studies, however, were hampered by the inability to maintain functional differentiation on conventional tissue culture plastic. We now know that the microenvironment, including the extracellular matrix and tissue architecture, plays a crucial role in directing functional differentiation of organs. Thus, in order for culture systems to be effective experimental models, they need to recapitulate the basic unit of differentiated function in the tissue or organ and to maintain its three-dimensional (3D) structure. Mouse mammary culture models evolved from basic monolayers of cells to an array of complex 3D systems that observe the importance of the microenvironment in dictating proper tissue function and structure. In this chapter, we focus on how 3D mouse mammary epithelial cultures have enabled investigators to gain a better understanding of the organization, development and function of the acinus, and to identify key molecular, structural, and mechanical cues important for maintaining mammary function and architecture. The accompanying chapter of Vidi et al. describes 3D models developed for human cells. Here, we describe how mouse primary epithelial cells and cell lines—essentially those we use in our laboratory—are cultured in relevant 3D microenvironments. We focus on the design of functional assays that enable us to understand the intricate signaling events underlying mammary gland biology, and address the advantages and limitations of the different culture settings. Finally we also discuss how advances in bioengineering tools may help towards the ultimate goal of building tissues and organs in culture for basic research and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babinet C (2000) Transgenic mice: an irreplaceable tool for the study of mammalian development and biology. J Am Soc Nephrol 11(Suppl 16):S88–S94

    PubMed  CAS  Google Scholar 

  2. Proia DA, Kuperwasser C (2006) Reconstruction of human mammary tissues in a mouse model. Nat Protoc 1:206–214

    Article  PubMed  CAS  Google Scholar 

  3. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76:69–125

    PubMed  CAS  Google Scholar 

  4. Schmeichel KL, Weaver VM, Bissell MJ (1998) Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. J Mammary Gland Biol Neoplasia 3:201–213

    Article  PubMed  CAS  Google Scholar 

  5. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM (2000) An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227–241

    Article  PubMed  CAS  Google Scholar 

  6. Bolander FF Jr (1990) Differential characteristics of the thoracic and abdominal mammary glands from mice. Exp Cell Res 189:142–144

    Article  PubMed  CAS  Google Scholar 

  7. Fendrick JL, Raafat AM, Haslam SZ (1998) Mammary gland growth and development from the postnatal period to postmenopause: ovarian steroid receptor ontogeny and regulation in the mouse. J Mammary Gland Biol Neoplasia 3:7–22

    Article  PubMed  CAS  Google Scholar 

  8. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, Soloway P, Itohara S, Werb Z (2003) Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 162:1123–1133

    Article  PubMed  CAS  Google Scholar 

  9. Silberstein GB (2001) Postnatal mammary gland morphogenesis. Microsc Res Tech 52:155–162

    Article  PubMed  CAS  Google Scholar 

  10. Daniel CW, Robinson S, Silberstein GB (1996) The role of TGF-beta in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1:331–341

    Article  PubMed  CAS  Google Scholar 

  11. Nandi S (1958) Endocrine control of mammarygland development and function in the C3H/He Crgl mouse. J Natl Cancer Inst 21:1039–1063

    PubMed  CAS  Google Scholar 

  12. Ramanathan P, Martin I, Thomson P, Taylor R, Moran C, Williamson P (2007) Genomewide analysis of secretory activation in mouse models. J Mammary Gland Biol Neoplasia 12:305–314

    Article  PubMed  Google Scholar 

  13. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235

    PubMed  CAS  Google Scholar 

  14. Lee EY, Lee WH, Kaetzel CS, Parry G, Bissell MJ (1985) Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc Natl Acad Sci U S A 82:1419–1423

    Article  PubMed  CAS  Google Scholar 

  15. Howlett AR, Bissell MJ (1993) The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol 2:79–89

    PubMed  CAS  Google Scholar 

  16. Rosen JM, Wyszomierski SL, Hadsell D (1999) Regulation of milk protein gene expression. Annu Rev Nutr 19:407–436

    Article  PubMed  CAS  Google Scholar 

  17. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, Hennighausen L, Furth PA (1997) Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A 94:3425–3430

    Article  PubMed  CAS  Google Scholar 

  18. Furth PA, Bar-Peled U, Li M (1997) Apoptosis and mammary gland involution: reviewing the process. Apoptosis 2:19–24

    Article  PubMed  CAS  Google Scholar 

  19. Quarrie LH, Addey CV, Wilde CJ (1995) Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling. Cell Tissue Res 281:413–419

    Article  PubMed  CAS  Google Scholar 

  20. Li M, Hu J, Heermeier K, Hennighausen L, Furth PA (1996) Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53-independent pathways. Cell Growth Differ 7:13–20

    PubMed  CAS  Google Scholar 

  21. Daniel CW, Deome KB (1965) Growth of mouse mammary glands in vivo after monolayer culture. Science 149:634–636

    Article  PubMed  CAS  Google Scholar 

  22. Daniel CW, Young LJ, Medina D, DeOme KB (1971) The influence of mammogenic hormones on serially transplanted mouse mammary gland. Exp Gerontol 6:95–101

    Article  PubMed  CAS  Google Scholar 

  23. Emerman JT, Burwen SJ, Pitelka DR (1979) Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell 11:109–119

    Article  PubMed  CAS  Google Scholar 

  24. Emerman JT, Pitelka DR (1977) Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328

    Article  PubMed  CAS  Google Scholar 

  25. Michalopoulos G, Pitot HC (1975) Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res 94:70–78

    Article  PubMed  CAS  Google Scholar 

  26. Emerman JT, Enami J, Pitelka DR, Nandi S (1977) Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc Natl Acad Sci U S A 74:4466–4470

    Article  PubMed  CAS  Google Scholar 

  27. Lee EY, Parry G, Bissell MJ (1984) Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J Cell Biol 98:146–155

    Article  PubMed  CAS  Google Scholar 

  28. Aggeler J, Ward J, Blackie LM, Barcellos-Hoff MH, Streuli CH, Bissell MJ (1991) Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J Cell Sci 99(Pt 2):407–417

    PubMed  Google Scholar 

  29. Chen LH, Bissell MJ (1989) A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul 1:45–54

    PubMed  CAS  Google Scholar 

  30. Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol 115:1383–1395

    Article  PubMed  CAS  Google Scholar 

  31. Xu R, Nelson CM, Muschler JL, Veiseh M, Vonderhaar BK, Bissell MJ (2009) Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. J Cell Biol 184:57–66

    Article  PubMed  CAS  Google Scholar 

  32. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115:39–50

    PubMed  CAS  Google Scholar 

  33. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    Article  PubMed  CAS  Google Scholar 

  34. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  35. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    Article  PubMed  CAS  Google Scholar 

  36. Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz AP, Roskelley C, Bissell MJ (1995) Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol 129:591–603

    Article  PubMed  CAS  Google Scholar 

  37. Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ (1987) Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A 84:136–140

    Article  PubMed  CAS  Google Scholar 

  38. Wicha MS, Lowrie G, Kohn E, Bagavandoss P, Mahn T (1982) Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A 79:3213–3217

    Article  PubMed  CAS  Google Scholar 

  39. Medina D, Li ML, Oborn CJ, Bissell MJ (1987) Casein gene expression in mouse mammary epithelial cell lines: dependence upon extracellular matrix and cell type. Exp Cell Res 172:192–203

    Article  PubMed  CAS  Google Scholar 

  40. Daniel CW, Berger JJ, Strickland P, Garcia R (1984) Similar growth pattern of mouse mammary epithelium cultivated in collagen matrix in vivo and in vitro. Dev Biol 104:57–64

    Article  PubMed  CAS  Google Scholar 

  41. Montesano R, Soriano JV, Fialka I, Orci L (1998) Isolation of EpH4 mammary epithelial cell subpopulations which differ in their morphogenetic properties. In Vitro Cell Dev Biol Anim 34:468–477

    Article  PubMed  CAS  Google Scholar 

  42. Niemann C, Brinkmann V, Spitzer E, Hartmann G, Sachs M, Naundorf H, Birchmeier W (1998) Reconstitution of mammary gland development in vitro: requirement of c-met and c-erbB2 signaling for branching and alveolar morphogenesis. J Cell Biol 143:533–545

    Article  PubMed  CAS  Google Scholar 

  43. Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518

    Article  PubMed  CAS  Google Scholar 

  44. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  PubMed  CAS  Google Scholar 

  45. Alcaraz J, Xu R, Mori H, Nelson CM, Mroue R, Spencer VA, Brownfield D, Radisky DC, Bustamante C, Bissell MJ (2008) Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J 27:2829–2838

    Article  PubMed  CAS  Google Scholar 

  46. Talhouk RS, Elble RC, Bassam R, Daher M, Sfeir A, Mosleh LA, El-Khoury H, Hamoui S, Pauli BU, El-Sabban ME (2005) Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis. Cell Tissue Res 319:49–59

    Article  PubMed  CAS  Google Scholar 

  47. El-Sabban ME, Sfeir AJ, Daher MH, Kalaany NY, Bassam RA, Talhouk RS (2003) ECM-induced gap junctional communication enhances mammary epithelial cell differentiation. J Cell Sci 116:3531–3541

    Article  PubMed  CAS  Google Scholar 

  48. Nguyen DA, Neville MC (1998) Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia 3:233–246

    Article  PubMed  CAS  Google Scholar 

  49. Talhouk RS, Mroue R, Mokalled M, Abi-Mosleh L, Nehme R, Ismail A, Khalil A, Zaatari M, El-Sabban ME (2008) Heterocellular interaction enhances recruitment of alpha and beta-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res 314:3275–3291

    Article  PubMed  CAS  Google Scholar 

  50. Wang X, Sun L, Maffini MV, Soto A, Sonnenschein C, Kaplan DL (2010) A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Biomaterials 31:3920–3929

    Article  PubMed  CAS  Google Scholar 

  51. Ingthorsson S, Sigurdsson V, Fridriksdottir AJ, Jonasson JG, Kjartansson J, Magnusson MK, Gudjonsson T (2010) Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture. BMC Res Note 3184

    Article  PubMed  Google Scholar 

  52. Chen A, Cuevas I, Kenny PA, Miyake H, Mace K, Ghajar C, Boudreau A, Bissell M, Boudreau N (2009) Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res 69:6721–6729

    Article  PubMed  CAS  Google Scholar 

  53. Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, Bissell MJ, Ronnov-Jessen L (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162:391–402

    Article  PubMed  CAS  Google Scholar 

  54. Ip MM, Darcy KM (1996) Three-dimensional mammary primary culture model systems. J Mammary Gland Biol Neoplasia 1:91–110

    Article  PubMed  CAS  Google Scholar 

  55. Hamamoto S, Imagawa W, Yang J, Nandi S (1988) Morphogenesis of mouse mammary epithelial cells growing within collagen gels: ultrastructural and immunocytochemical characterization. Cell Differ 22:191–201

    Article  PubMed  CAS  Google Scholar 

  56. Bissell MJ (1981) The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. Int Rev Cytol 70:27–100

    Article  PubMed  CAS  Google Scholar 

  57. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89:9064–9068

    Article  PubMed  CAS  Google Scholar 

  58. Lin CQ, Bissell MJ (1993) Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7:737–743

    PubMed  CAS  Google Scholar 

  59. Streuli CH, Bissell MJ (1990) Expression of extracellular matrix components is regulated by substratum. J Cell Biol 110:1405–1415

    Article  PubMed  CAS  Google Scholar 

  60. Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A 91:12378–12382

    Article  PubMed  CAS  Google Scholar 

  61. Faraldo MM, Deugnier MA, Lukashev M, Thiery JP, Glukhova MA (1998) Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO J 17:2139–2147

    Article  PubMed  CAS  Google Scholar 

  62. Muschler J, Lochter A, Roskelley CD, Yurchenco P, Bissell MJ (1999) Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Mol Biol Cell 10:2817–2828

    PubMed  CAS  Google Scholar 

  63. Weir ML, Oppizzi ML, Henry MD, Onishi A, Campbell KP, Bissell MJ, Muschler JL (2006) Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. J Cell Sci 119:4047–4058

    Article  PubMed  CAS  Google Scholar 

  64. Lin CQ, Dempsey PJ, Coffey RJ, Bissell MJ (1995) Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice. J Cell Biol 129:1115–1126

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Y, Sif S, DeWille J (2007) The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem 102:1256–1270

    Article  PubMed  CAS  Google Scholar 

  66. Spencer VA, Xu R, Bissell MJ (2010) Gene expression in the third dimension: the ECM-nucleus connection. J Mammary Gland Biol Neoplasia 15:65–71

    Article  PubMed  Google Scholar 

  67. Lelievre S, Weaver VM, Bissell MJ (1996) Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: a model of gene regulation. Recent Prog Horm Res 51:417–432

    PubMed  CAS  Google Scholar 

  68. Xu R, Spencer VA, Bissell MJ (2007) Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 282:14992–14999

    Article  PubMed  CAS  Google Scholar 

  69. Schmidhauser C, Bissell MJ, Myers CA, Casperson GF (1990) Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5’ sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci U S A 87:9118–9122

    Article  PubMed  CAS  Google Scholar 

  70. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68

    Article  PubMed  CAS  Google Scholar 

  71. Talhouk RS, Chin JR, Unemori EN, Werb Z, Bissell MJ (1991) Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112:439–449

    PubMed  CAS  Google Scholar 

  72. Talhouk RS, Bissell MJ, Werb Z (1992) Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 118:1271–1282

    Article  PubMed  CAS  Google Scholar 

  73. Sympson CJ, Talhouk RS, Alexander CM, Chin JR, Clift SM, Bissell MJ, Werb Z (1994) Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol 125:681–693

    Article  PubMed  CAS  Google Scholar 

  74. Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ (2001) The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128:3117–3131

    PubMed  CAS  Google Scholar 

  75. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300

    Article  PubMed  CAS  Google Scholar 

  76. Fata JE, Mori H, Ewald AJ, Zhang H, Yao E, Werb Z, Bissell MJ (2007) The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFalpha and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 306:193–207

    Article  PubMed  CAS  Google Scholar 

  77. Stoker AW, Streuli CH, Martins-Green M, Bissell MJ (1990) Designer microenvironments for the analysis of cell and tissue function. Curr Opin Cell Biol 2:864–874

    Article  PubMed  CAS  Google Scholar 

  78. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309

    Article  PubMed  CAS  Google Scholar 

  79. Bissell MJ, Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 8:327–343

    PubMed  CAS  Google Scholar 

  80. Reichmann E, Ball R, Groner B, Friis RR (1989) New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. J Cell Biol 108:1127–1138

    Article  PubMed  CAS  Google Scholar 

  81. Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J, Busslinger M, Beug H (1992) Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71:1103–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Joni Mott for critical reading of the manuscript and Dr. Hidetoshi Mori for providing images of cells in Fig. 2b, c. The work from MJB’s laboratory is supported by grants from the US Department of Energy, Office of Biological and Environmental Research, a Distinguished Fellow Award to MJB and Low Dose Radiation Program (contract no. DE-AC02-05CH1123); by National Cancer Institute (awards R37CA064786, U54CA126552, R01CA057621, U54CA112970, U54CA143836, U01CA143233); and by US Department of Defense (W81XWH0810736). RM is supported by US Department of Defense, BCRP fellowship (W81XWH0810481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina J. Bissell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mroue, R., Bissell, M.J. (2012). Three-Dimensional Cultures of Mouse Mammary Epithelial Cells. In: Randell, S., Fulcher, M. (eds) Epithelial Cell Culture Protocols. Methods in Molecular Biology, vol 945. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-125-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-125-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-124-0

  • Online ISBN: 978-1-62703-125-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics