Skip to main content

Analysis of CFTR Interactome in the Macromolecular Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel localized primarily at the apical surface of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, and transporters, in addition to its role as a chloride conductor. Most interactions occur primarily between the opposing terminal tails (N or C) of CFTR and its binding partners, either directly or mediated through various PDZ domain-containing proteins. This chapter describes methods we developed to cross-link CFTR into a macromolecular complex to identify and analyze the assembly and regulation of CFTR-containing complexes in the plasma membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Quinton, P. M. (1983) Chloride impermeability in cystic fibrosis. Nature 301, 421–422.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C., et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.

    Article  PubMed  CAS  Google Scholar 

  3. Bear, C. E., Li, C. H., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesingh, M., et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818.

    Article  PubMed  CAS  Google Scholar 

  4. Welsh, M. J., Tsui, L. -C., Boat, T. F., and Beaudet, A. L. (1995) Cystic fibrosis, in (Scriver, C., Beaudet, A. L., Sly, W. S., Valle, D. (eds)) The Metabolic and Molecular Basis of Inherited Diseases: Membrane Transport Systems. McGraw-Hill, New York, NY, pp. 3799–3876.

    Google Scholar 

  5. Li, C., and Naren, A. P. (2005) Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol. Ther. 108, 208–223.

    Article  PubMed  CAS  Google Scholar 

  6. Chao, A. C., de Sauvage, F. J., Dong, Y. J., Wagner, J. A., Goeddel, D. V., and Gardner, P. (1994) Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 13, 1065–1072.

    PubMed  CAS  Google Scholar 

  7. Dean, M., Rzhetsky, A., and Allikmets, R. (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166.

    Article  PubMed  CAS  Google Scholar 

  8. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  9. Guggino, W. B., and Stanton, B. A. (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol. 7, 426–436.

    Article  PubMed  CAS  Google Scholar 

  10. Knowles, M. R., Stutts, M. J., Spock, A., Fischer, N., Gatzy, J. T., and Boucher, R. C. (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  11. Gabriel, S. E., Clarke, L. L., Boucher, R. C., and Stutts, M. J. (1993) CFTR and outwardly rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363, 263–268.

    Article  PubMed  CAS  Google Scholar 

  12. McNicholas, C. M., Guggino, W. B., Schwiebert, E. M., Hebert, S. C., Giebisch, G., and Egan, M. E. (1996) Sensitivity of a renal K+ channel (Romk2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc. Natl. Acad. Sci. USA 93, 8083–8088.

    Article  PubMed  CAS  Google Scholar 

  13. Kunzelmann, K., Mall, M., Briel, M., Hipper, A., Nitschke, R., Ricken, S., et al. (1997) The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl conductance of Xenopus oocytes. Pflugers Arch. 435, 178–181.

    Article  PubMed  CAS  Google Scholar 

  14. Schreiber, R., Nitschke, R., Greger, R., and Kunzelmann, K. (1999) The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells. J. Biol. Chem. 274, 11811–11816.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, M. G., Wigley, W. C., Zeng, W., Noel, L. E., Marino, C. R., Thomas, P. J., et al. (1999) Regulation of Cl/ HCO3 exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J. Biol. Chem. 274, 3414–3421.

    Article  PubMed  CAS  Google Scholar 

  16. Shumaker, H., Amlal, H., Frizzell, R., Ulrich, C. D., and Soleimani, M. (1999) CFTR drives Na+-nHCO(3)(–) cotransport in pancreatic duct cells: a basis for defective HCO3 secretion in CF. Am. J. Physiol. Cell Physiol. 276, C16–C25.

    CAS  Google Scholar 

  17. Ahn, W., Kim, K. H., Lee, J. A., Kim, J. Y., Choi, J. Y., Moe, O. W., et al. (2001) Regulatory interaction between the cystic fibrosis transmembrane conductance regulator and HCO3 salvage mechanisms in model systems and the mouse pancreatic duct. J. Biol. Chem. 276, 17236–17243.

    Article  PubMed  CAS  Google Scholar 

  18. Sugita, M., Yue, Y., and Foskett, J. K. (1998) CFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J. 17, 898–908.

    Article  PubMed  CAS  Google Scholar 

  19. Naren, A. P., Nelson, D. J., Xie, W., Jovov, B., Tousson, A., Pevsner, J., et al. (1997) Regulation of CFTR chloride channels by syntaxin and Munc 18 isoforms. Nature 390, 302–305.

    Article  PubMed  CAS  Google Scholar 

  20. Naren, A. P., Anke, D., Cormet-Boyaka, E., Boyaka, P. N., McGhee, J. R., Zhou, W., et al.(1999) Syntaxin 1A is expressed in airway epithelial cells where it modulates CFTR Cl currents. J. Clin. Invest. 105, 377–386.

    Article  Google Scholar 

  21. Naren, A. P., Cobb, B., Li, C., Roy, K., Nelson, D., Heda, G. D., et al. (2003) A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc. Natl. Acad. Sci. USA 100, 342–346.

    Article  PubMed  CAS  Google Scholar 

  22. Li, C., Dandridge, K. S., Di, A., Marrs, K. L., Harris, E. L., Roy, K., et al. (2005) Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J. Exp. Med. 202, 975–986.

    Article  PubMed  CAS  Google Scholar 

  23. Li, C., Krishnamurthy, P. C., Penmatsa, H., Marrs, K. L., Wang, X. Q., Zaccolo, M. J., et al. (2007) Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 131, 940–951.

    Article  PubMed  CAS  Google Scholar 

  24. Li, C., Schuetz, J. D., and Naren, A. P. (2010) Tobacco carcinogen NNK Transporter MRP2 Regulates CFTR Function in lung epithelia: implications for lung cancer. Cancer Lett. 292, 246–253.

    Google Scholar 

  25. Fanning, A. S. and Anderson, J. M. (1999) Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439.

    Article  PubMed  CAS  Google Scholar 

  26. Harris, B. Z. and Lim, W. A. (2001) Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231.

    PubMed  CAS  Google Scholar 

  27. Li, C. and Naren, A. P. (2010) CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr. Biol. 2, 161–177.

    Google Scholar 

  28. Hall, R. A., Ostedgaard, L. S., Premont, R. T., Blitzer, J. T., Rahman, N., Welsh, M. J., et al. (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95, 8496–8501.

    Article  PubMed  CAS  Google Scholar 

  29. Short, D. B., Trotter, K. W., Reczek, D., Kreda, S. M., Bretscher, A., Boucher, R. C., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19797–19801.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, S., Yue, H., Derin, R. B., Guggino, W. B., and Li, M. (2000) Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 103, 169–179.

    Article  PubMed  CAS  Google Scholar 

  31. Sun, F., Hug, M. J., Lewarchik, C. M., Yun, C. H., Bradbury, N. A., and Frizzell, R. A. (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J. Biol. Chem. 275, 29539–29546.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng, J., Moyer, B. D., Milewski, M., Loffing, J., Ikeda, M., Mickle, J. E., et al. (2002) A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J. Biol. Chem. 277, 3520–3529.

    Article  PubMed  CAS  Google Scholar 

  33. Scott, R. O., Thelin, W. R., and Milgram, S. L. (2002) A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J. Biol. Chem. 277, 22934–22941.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, J. H., Richter, W., Namkung, W., Kim, K. H., Kim, E., Conti, M., et al. (2007) Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors. J. Biol. Chem. 282, 10414–10422.

    Article  PubMed  CAS  Google Scholar 

  35. Naren, A. P. (2002) Methods for the study of intermolecular and intramolecular interactions regulating CFTR function. Methods Mol. Med. 70, 175–186.

    PubMed  CAS  Google Scholar 

  36. Li, C., Roy, K., Dandridge, K., and Naren, A. P. (2004) Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. J. Biol. Chem 279, 24673–24684.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr David Armbruster for critically reading the manuscript and Ms. Feng Zhou for formatting the references. This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases grants DK058545 and DK074996 (to A.P.N.), and American Heart Association (Midwest Affiliate) Beginning-grant-in-aid #0765185B (to C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, C., Naren, A.P. (2011). Analysis of CFTR Interactome in the Macromolecular Complexes. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics