Skip to main content

Immature Seeds and Embryos of Medicago truncatula Cultured In Vitro

  • Protocol
  • First Online:
Plant Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 710))

Abstract

Legumes are an important source of proteins and lipids for food and feed. In addition, they are ­environmentally friendly because of their capacity to fix nitrogen through a symbiosis with Rhizobium that permits them to produce abundant proteins even in the absence of nitrogen fertilization. Seed development in plants follows three chronological steps (1) seed coat differentiation, embryo morphogenesis and endosperm development; (2) embryo maturation with storage accumulation and (3) dehydration and the acquisition of desiccation tolerance. Finally, germination occurs when the environmental conditions become favourable. Working with the model legume Medicago truncatula, an in vitro protocol was developed for the culture of immature embryos that permits their development in a way comparable to that observed in plants.

In this chapter, the usefulness of this system for investigating embryo development in legumes is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borisjuk L, Weber H, Panitz R, Manteuffel R, Wobus U (1995) Embryogenesis of V. faba histodifferentiation in relation to starch and storage protein synthesis. J Plant Physiol 147:203–218

    Article  CAS  Google Scholar 

  2. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Ann Rev Plant Biol 56:253–279

    Article  CAS  Google Scholar 

  3. Ochatt SJ, Pontécaille C, Rancillac M (2000) The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein peas. In Vitro Cell Dev Biol Plant 36:188–193

    CAS  Google Scholar 

  4. Ochatt SJ, Sangwan RS, Marget P, Assoumou Ndong Y, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440

    Article  Google Scholar 

  5. Gallardo K, Kurt C, Thompson R, Ochatt S (2006) In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Sci 170:1052–1058

    Article  CAS  Google Scholar 

  6. Blondon F, Marie D, Brown S, Kondorosi A (1994) Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37:264–270

    Article  PubMed  CAS  Google Scholar 

  7. Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy G, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  8. Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene approach and for investigating the synteny with the model species Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  PubMed  CAS  Google Scholar 

  9. Kaló P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Gen Genomics 272:235–246

    Article  Google Scholar 

  10. Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi JM, Rochat C, Boutin JP (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43:557–566

    Article  PubMed  CAS  Google Scholar 

  11. Gallardo K, Le Signor C, Vandekerckhove J, Thompson R, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  PubMed  CAS  Google Scholar 

  12. Ochatt SJ (2006) Flow cytometry (ploidy determination, cell cycle analysis, DNA content per nucleus). In: Medicago truncatula handbook, Chapter 2.2.7. Available at: http://www.noble.org/MedicagoHandbook/, November 2006. ISBN number 0-9754303-1-9

  13. Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73:581–598

    PubMed  Google Scholar 

  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco ­tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  15. Widholm JM (1972) The use of fluorescein diacetate and phenosaphranine for determining the viability of cultured cells. Stain Technol 47:189–194

    PubMed  CAS  Google Scholar 

  16. Munier-Jolain NG, Ney B (1998) Seed growth rate in grain legumes. J Exp Bot 49:1963–1969

    Article  CAS  Google Scholar 

  17. Kowles RV, Srienc F, Phillips RL (1990) Endoreduplication of nuclear DNA in the developing maize endosperm. Dev Genet 11:125–132

    Article  CAS  Google Scholar 

  18. Reidt W, Wohlfarth T, Ellestrom M, Czihal A, Tewes A, Ezcurra I, Rask L, Baumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is direct target of the FUS3 gene product. Plant J 21:401–408

    Article  PubMed  CAS  Google Scholar 

  19. Quatrano RS, Bartels D, Ho THD, Pages M (1997) New insights into ABA-mediated processes. Plant Cell 9:470–475

    Article  CAS  Google Scholar 

  20. Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  21. Xu NF, Bewley JD (1995) The role of abscisic acid in germination, storage protein synthesis and desiccation tolerance in alfalfa (Medicago sativa L.) seeds, as shown by inhibition of its synthesis by fluridone during development. J Exp Bot 46:687–694

    Article  CAS  Google Scholar 

  22. Xu NF, Bewley JD (1995) Temporal and nutritional factors modulate responses to abscisic acid and osmoticum in their regulation of storage protein synthesis in developing seeds of alfalfa (Medicago sativa L.). J Exp Bot 46:675–686

    Article  CAS  Google Scholar 

  23. Ohtake N, Kawachi T, Okuyama I, Fujikake H, Sueyoshi K, Ohyama T (2001) Effect of short-term application of nitrogen on the accumulation of beta-subunit of beta-conglycinin in nitrogen-starved soybean (Glycine max L.) developing seeds. Soil Sci Plant Nutr 48:31–41

    Article  Google Scholar 

  24. Karjalainen R, Kortet S (1987) Environmental and genetic variation in protein content of peas under northern growing conditions and breed­ing­ implications. J Agric Sci Finland 59:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Ochatt, S.J. (2011). Immature Seeds and Embryos of Medicago truncatula Cultured In Vitro. In: Thorpe, T., Yeung, E. (eds) Plant Embryo Culture. Methods in Molecular Biology, vol 710. Humana Press. https://doi.org/10.1007/978-1-61737-988-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-988-8_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-987-1

  • Online ISBN: 978-1-61737-988-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics