Skip to main content

Multimodal Nanoparticulate Bioimaging Contrast Agents

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 624))

Abstract

A wide variety of bioimaging techniques (e.g., ultrasound, computed X-ray tomography, magnetic resonance imaging (MRI), and positron emission tomography) are commonly employed for clinical diagnostics and scientific research. While all of these methods use a characteristic “energy–matter” interaction to provide specific details about biological processes, each modality differs from another in terms of spatial and temporal resolution, anatomical and molecular details, imaging depth, as well as the desirable material properties of contrast agents needed for augmented imaging. On many occasions, it is advantageous to apply multiple complimentary imaging modalities for faster and more accurate prognosis. Since most imaging modalities employ exogenous contrast agents to improve the signal-to-noise ratio, the development and use of multimodal contrast agents is considered to be highly advantageous for obtaining improved imagery from sought-after imaging modalities. Multimodal contrast agents offer improvements in patient care, and at the same time can reduce costs and enhance safety by limiting the number of contrast agent administrations required for imaging purposes. Herein, we describe the synthesis and characterization of nanoparticulate-based multimodal contrast agent for noninvasive bioimaging using MRI, optical, and photoacoustic tomography (PAT)-imaging modalities. The synthesis of these agents is described using microemulsions, which enable facile integration of the desired diversity of contrast agents and material components into a single entity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frullano, L. and Meade, T. J. Multimodal M. R. I. contrast agents (2007) J Biol Inorg Chem 12(7), 939–949.

    Article  CAS  PubMed  Google Scholar 

  2. Rudin, M. and Weissleder, R.Molecular imaging in drug discovery and development (2003) Nat Rev Drug Discov 2(2), 123–131.

    Article  CAS  PubMed  Google Scholar 

  3. Tallury, P., Payton, K., and Santra, S.Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications (2008) Nanomedicine 3(4), 579–592.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, J., Piao, Y., and Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy (2009) Chem Soc Rev 38(2), 372–390.

    Article  CAS  PubMed  Google Scholar 

  5. Cheon, J. and Lee, J. H.Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology (2008) Accounts Chem Res 41(12), 1630–1640.

    Article  CAS  Google Scholar 

  6. Mulder, W. J. M., Griffioen, A. W., Strijkers, G. J., Cormode, D. P., Nicolay, K., and Fayad, Z. A.Magnetic and fluorescent nanoparticles for multimodality imaging (2007) Nanomedicine 2(3), 307–324.

    Article  CAS  PubMed  Google Scholar 

  7. Graves, E. E., Ripoll, J., Weissleder, R., and Ntziachristos, V.A submillimeter resolution fluorescence molecular imaging system for small animal imaging (2003) Med Phys 30(5), 901–911.

    Article  CAS  PubMed  Google Scholar 

  8. Ntziachristos, V. and Weissleder, R.Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media (2002) Med Phys 29(5), 803–809.

    Article  PubMed  Google Scholar 

  9. Kircher, M. F., Mahmood, U., King, R. S., Weissleder, R., and Josephson, L.A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation (2003) Cancer Res 63(23), 8122–8125.

    CAS  PubMed  Google Scholar 

  10. Bremer, C. and Weissleder, R.Molecular imaging – in vivo imaging of gene expression: MR and optical technologies (2001) Acad Radiol 8(1), 15–23.

    Article  CAS  PubMed  Google Scholar 

  11. Persigehl, T., Heindel, W., and Bremer, C.MR and optical approaches to molecular imaging (2005) Abdom Imaging 30(3), 342–354.

    Article  CAS  PubMed  Google Scholar 

  12. Sosnovik, D. and Weissleder, R. (2005) Magnetic resonance and fluorescence based molecular imaging technologies. Imaging Drug Discov Early Clin Trials 62, 83–115.

    Article  Google Scholar 

  13. Esenaliev, R. O., Karabutov, A. A., and Oraevsky, A. A.Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors (1999) IEEE J Sel Top Quant Electron 5(4), 981–988.

    Article  CAS  Google Scholar 

  14. Wang, X. D., Pang, Y. J., Ku, G., Xie, X. Y., Stoica, G., and Wang, L. H. V.Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain (2003) Nat Biotechnol 21(7), 803–806.

    Article  CAS  PubMed  Google Scholar 

  15. Ku, G., Wang, X., Stoica, G., and Wang, L. V. Multiple-bandwidth photoacoustic tomography (2004) Phys Med Biol 49(7), 1329–1338.

    Article  PubMed  Google Scholar 

  16. Ku, G., Fornage, B. D., Jin, X., Xu, M. H., Hunt, K. K., and Wang, L. V. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging (2005) Technol Cancer Res Treatment 4(5), 559–565.

    Google Scholar 

  17. Oraevsky, A. A., Ermilov, S. A., Conjusteau, A., et al (2007) Initial clinical evaluation of laser optoacoustic imaging system for diagnostic imaging of breast cancer. Breast Canc Res Treat 106, S47.

    Google Scholar 

  18. Ku, G., Wang, X. D., Xie, X. Y., Stoica, G., and Wang, L. H. V.Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography (2005) Appl Optics 44(5), 770–775.

    Article  Google Scholar 

  19. Wang, X. D., Xie, X. Y., Ku, G. N., and Wang, L. H. V. (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Optics 11(2), 024015.

    Article  Google Scholar 

  20. Pileni, M. P.Reverse micelles as microreactors (1993) J Physical Chem 97(27), 6961–6973.

    Article  CAS  Google Scholar 

  21. Evans, D. F. and Wennerström, H. (1994) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. VCH Publishers, New York, NY.

    Google Scholar 

  22. Mittal, K. L. and Kumar, P. (1999) Handbook of Microemulsion Science and Technology. Marcel Dekker, New York.

    Google Scholar 

  23. Pileni, M. P. (1989) Structure and Reactivity in Reverse Micelles. Elsevier, Amsterdam; New York.

    Google Scholar 

  24. Fendler, J. H. (1982) Membrane Mimetic Chemistry: Characterizations and Applications of Micelles, Microemulsions, Monolayers, Bilayers, Vesicles, Host-Guest Systems, and Polyions. Wiley, New York.

    Google Scholar 

  25. Texter, J. (2001) Reactions and Synthesis in Surfactant Systems. Marcel Dekker, New York.

    Google Scholar 

  26. Rosano, H. L. and Clausse, M. (1987) Microemulsion Systems. M. Dekker, New York, NY.

    Google Scholar 

  27. Lopez-Quintela, M. A., Tojo, C., Blanco, M. C., Rio, L. G., and Leis, J. R.Microemulsion dynamics and reactions in microemulsions (2004) Curr Opin Colloid Interface Sci 9(3–4), 264–278.

    Article  CAS  Google Scholar 

  28. Sharma, P., Brown, S., Varshney, M., and Moudgil, B. (2008) Surfactant-Mediated Fabrication of Optical Nanoprobes. Interfacial Proces Mol Aggregation Surfactants 218, 189–233.

    Article  CAS  Google Scholar 

  29. Abarkan, I., Doussineau, T., and Smaihi, M.Tailored macro/micro structural properties of colloidal silica nanoparticles via microemulsion preparation (2006) Polyhedron 25(8), 1763–1770.

    Article  CAS  Google Scholar 

  30. Bagwe, R. P., Yang, C. Y., Hilliard, L. R., and Tan, W. H.Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method (2004) Langmuir 20(19), 8336–8342.

    Article  CAS  PubMed  Google Scholar 

  31. Santra, S., Wang, K. M., Tapec, R., and Tan, W. H.Development of novel dye-doped silica nanoparticles for biomarker application (2001) J Biomed Optics 6(2), 160–166.

    Article  CAS  Google Scholar 

  32. Schroedter, A. and Weller, H.Ligand design and bioconjugation of colloidal gold nanoparticles (2002) Angewandte Chemie Int Ed 41(17), 3218–3221.

    Article  CAS  Google Scholar 

  33. Santra, S., Yang, H., Dutta, D., et al (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 24, 2810–2811.

    Article  Google Scholar 

  34. Santra, S., Bagwe, R. P., Dutta, D., et al. Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications (2005) Adv Mater 17(18), 2165–2169.

    Article  CAS  Google Scholar 

  35. Santra, S., Yang, H. S., Holloway, P. H., Stanley, J. T., and Mericle, R. A.Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS: Mn/ZnS quantum dots: a multifunctional probe for bioimaging (2005) J Am Chem Soc 127(6), 1656–1657.

    Article  CAS  PubMed  Google Scholar 

  36. Sharrna, P., Brown, S., Walter, G., Santra, S., and Moudgil, B. (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123, 471–485.

    Article  Google Scholar 

  37. Sharma, P., Brown, S. C., Bengtsson, N., et al. Gold-speckled multimodal nanoparticles for noninvasive bioimaging (2008) Chem Mater 20(19), 6087–6094.

    Article  CAS  PubMed  Google Scholar 

  38. Hermanson, G. T. (2008) Bioconjugate Techniques. 2nd ed. Academic Press, New York.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Particle Engineering Research Center (PERC) at the University of Florida, the National Science Foundation (NSF Grant EEC-94-02989, NSF-NIRT Grant EEC-0506560), the National Institute of Health (RO1HL75258, R01HL78670), James and Esther King Biomedical Research Program (Grant 06NIR-05), Patricia Adams Cancer Nanotechnology Research Fund, and the Industrial Partners of the PERC for support of his research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation. NMR (MRI) data were obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the University of Florida. P.S. acknowledges Principal, St. Stephen’s College, Delhi, India, for granting leave for research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sharma, P. et al. (2010). Multimodal Nanoparticulate Bioimaging Contrast Agents. In: Grobmyer, S., Moudgil, B. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 624. Humana Press. https://doi.org/10.1007/978-1-60761-609-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-609-2_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-608-5

  • Online ISBN: 978-1-60761-609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics