Skip to main content

Live Cell Imaging of Zebrafish Leukocytes

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 546))

Summary

Zebrafish are ideally suited for the live imaging of early immune cell compartments. Macrophages that initially appear on the yolk surface prior to the onset of circulation are the first functional immune cells within the embryo, predating the emergence of the first granulocytic cells—the heterophilic neutrophils. Both cell types have been shown in zebrafish to contribute to a robust early innate immune system, capable of clearing systemic infections and participating in wound healing. Early imaging of these cells within zebrafish relied on differential interference contrast (DIC) optics because of their superficial locations in the embryo and the optical transparency of embryonic tissues. Recently, the creation of a number of transgenic reporter lines possessing fluorescently marked myelomonocytic compartments provides the potential to live image these cells during the inflammatory response, in real-time, within a whole animal context. Live imaging during the different stages of inflammation using this expanding library of reporter lines, coupled with the ability to model aspects of human disease in the zebrafish system, have the potential to provide significant insights into inflammation and diseases associated with its dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin, P., and Leibovich, S. J. (2005). Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15, 599–607.

    Article  CAS  PubMed  Google Scholar 

  2. Anghelina, M., Moldovan, L., Zabuawala, T., Ostrowski, M. C., and Moldovan, N. I. (2006). A subpopulation of peritoneal macrophages form capillarylike lumens and branching patterns in vitro. J Cell Mol Med 10, 708–715.

    Article  PubMed  Google Scholar 

  3. Hume, D. A. (2006). The mononuclear phagocyte system. Curr Opin Immunol 18, 49–53.

    Article  CAS  PubMed  Google Scholar 

  4. Germain, R. N., Miller, M. J., Dustin, M. L., and Nussenzweig, M. C. (2006). Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6, 497–507.

    Article  CAS  PubMed  Google Scholar 

  5. Germain, R. N., Castellino, F., Chieppa, M., Egen, J. G., Huang, A. Y., Koo, L. Y., and Qi, H. (2005). An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 17, 431–441.

    Article  CAS  PubMed  Google Scholar 

  6. Scheinecker, C. (2005). Application of in vivo microscopy: evaluating the immune response in living animals. Arthritis Res Ther 7, 246–252.

    Article  CAS  PubMed  Google Scholar 

  7. Herbomel, P., Thisse, B., and Thisse, C. (1999). Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745.

    CAS  PubMed  Google Scholar 

  8. Renshaw, S. A., Loynes, C. A., Trushell, D. M., Elworthy, S., Ingham, P. W., and Whyte, M. K. (2006). A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976–3978.

    Article  CAS  PubMed  Google Scholar 

  9. Mathias, J. R., Perrin, B. J., Liu, T. X., Kanki, J., Look, A. T., and Huttenlocher, A. (2006). Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80, 1281–1288.

    Article  CAS  PubMed  Google Scholar 

  10. Mathias, J. R., Dodd, M. E., Walters, K. B., Rhodes, J., Kanki, J. P., Look, A. T., and Huttenlocher, A. (2007). Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci 120, 3372–3383.

    Article  CAS  PubMed  Google Scholar 

  11. Le Guyader, D., Redd, M. J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., Mordelet, E., Zapata, A., Shinomiya, H., and Herbomel, P. (2008). Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. Blood 111, 132–141.

    Article  CAS  PubMed  Google Scholar 

  12. Clay, H., Davis, J. M., Beery, D., Huttenlocher, A., Lyons, S. E., and Ramakrishnan, L. (2007). Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2, 29–39.

    Article  CAS  PubMed  Google Scholar 

  13. Meijer, A. H., van der Sar, A. M., Cunha, C., Lamers, G. E., Laplante, M. A., Kikuta, H., Bitter, W., Becker, T. S., and Spaink, H. P. (2008). Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev Comp Immunol 32, 36–49.

    Article  CAS  PubMed  Google Scholar 

  14. Davis, J. M., Clay, H., Lewis, J. L., Ghori, N., Herbomel, P., and Ramakrishnan, L. (2002). Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Immunity 17, 693–702.

    Article  CAS  PubMed  Google Scholar 

  15. van der Sar, A. M., Musters, R. J., van Eeden, F. J., Appelmelk, B. J., Vandenbroucke-Grauls, C. M., and Bitter, W. (2003). Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5, 601–611.

    Article  CAS  PubMed  Google Scholar 

  16. van der Sar, A. M., Stockhammer, O. W., van der Laan, C., Spaink, H. P., Bitter, W., and Meijer, A. H. (2006). MyD88 innate immune function in a zebrafish embryo infection model. Infect Immun 74, 2436–2441.

    Article  CAS  PubMed  Google Scholar 

  17. Bertrand, J. Y., Kim, A. D., Violette, E. P., Stachura, D. L., Cisson, J. L., and Traver, D. (2007). Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156.

    Article  CAS  PubMed  Google Scholar 

  18. Redd, M. J., Kelly, G., Dunn, G., Way, M., and Martin, P. (2006). Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63, 415–422.

    Article  CAS  PubMed  Google Scholar 

  19. Hall, C., Flores, M. V., Storm, T., Crosier, K., and Crosier, P. (2007). The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7, 42.

    Article  PubMed  Google Scholar 

  20. Davidson, A. J., and Zon, L. I. (2004). The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23, 7233–7246.

    Article  CAS  PubMed  Google Scholar 

  21. Zapata, A., Diez, B., Cejalvo, T., Gutierrez-de Frias, C., and Cortes, A. (2006). Ontogeny of the immune system of fish. Fish Shellfish Immunol 20, 126–136.

    Article  CAS  PubMed  Google Scholar 

  22. Trede, N. S., Langenau, D. M., Traver, D., Look, A. T., and Zon, L. I. (2004). The use of zebrafish to understand immunity. Immunity 20, 367–379.

    Article  CAS  PubMed  Google Scholar 

  23. Willett, C. E., Cortes, A., Zuasti, A., and Zapata, A. G. (1999). Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev Dyn 214, 323–336.

    Article  CAS  PubMed  Google Scholar 

  24. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., and Sin, Y. M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28, 9–28.

    Article  CAS  PubMed  Google Scholar 

  25. Westerfield, M. (2000). The Zebrafish Book. University of Oregon Press, Eugene, 4th ed.

    Google Scholar 

  26. Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. (2004). Image Processing with. ImageJ. Biophoton Int 11, 36–42.

    Google Scholar 

  27. Kissa, K., Murayama, E., Zapata, A., Cortes, A., Perret, E., Machu, C., and Herbomel, P. (2007). Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111, 1147–1156

    Article  PubMed  Google Scholar 

  28. Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H. F., Handin, R. I., and Herbomel, P. (2006). Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25, 963–975.

    Article  CAS  PubMed  Google Scholar 

  29. Winsauer, G., and de Martin, R. (2007). Resolution of inflammation: intracellular feedback loops in the endothelium. Thromb Haemost 97, 364–369.

    CAS  PubMed  Google Scholar 

  30. Sepich, D. S., Wegner, J., O’Shea, S., and Westerfield, M. (1998). An altered intron inhibits synthesis of the acetylcholine receptor alpha-subunit in the paralyzed zebrafish mutant nic1. Genetics 148, 361–372.

    CAS  PubMed  Google Scholar 

  31. Lawson, N. D., and Weinstein, B. M. (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248, 307–318.

    Article  CAS  PubMed  Google Scholar 

  32. Ward, A. C., McPhee, D. O., Condron, M. M., Varma, S., Cody, S. H., Onnebo, S. M., Paw, B. H., Zon, L. I., and Lieschke, G. J. (2003). The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102, 3238–3240.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu, K., Traver, D., Kutok, J. L., Hagen, A., Liu, T. X., Paw, B. H., Rhodes, J., Berman, J. N., Zon, L. I., Kanki, J. P., and Look, A. T. (2004). The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104, 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  34. Traver, D., Paw, B. H., Poss, K. D., Penberthy, W. T., Lin, S., and Zon, L. I. (2003). Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4, 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, H., Traver, D., Davidson, A. J., Dibiase, A., Thisse, C., Thisse, B., Nimer, S., and Zon, L. I. (2005). Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 281, 256–269.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jacqui Ross and other members of the Biological Imaging Research Unit (The University of Auckland) for imaging assistance; Alhad Mahagaonkar for management of the zebrafish facility; and Annie Chien and Lisa Pullin for expert technical assistance and Makoto Kamei for imaging advice. This work was supported by a grant from the Foundation for Research Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Crosier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hall, C., Flores, M.V., Crosier, K., Crosier, P. (2009). Live Cell Imaging of Zebrafish Leukocytes. In: Lieschke, G., Oates, A., Kawakami, K. (eds) Zebrafish. Methods in Molecular Biology, vol 546. Humana Press. https://doi.org/10.1007/978-1-60327-977-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-977-2_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-976-5

  • Online ISBN: 978-1-60327-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics