Skip to main content

Next-Generation Sequencing Methods: Impact of Sequencing Accuracy on SNP Discovery

  • Protocol
  • First Online:
Book cover Single Nucleotide Polymorphisms

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 578))

Abstract

The advent of next-generation sequencing technologies has spurred remarkable progress in the field of genomics. Whereas traditional Sanger sequencing has yielded the first complete human genome sequence, next-generation methods have been able to resequence several human genomes. In this manner, next-generation approaches have powerful capabilities for understanding human variation. The throughput for these approaches is often measured in billions of base pairs per run, astounding numbers when compared with the millions of base pairs per day generated by automated capillary DNA sequencers. However, unlike traditional Sanger dideoxy sequencing, these methods have lower accuracy and shorter read lengths than the dideoxy gold standard. Are these limitations offset by the higher throughputs? An in-depth look at the single read and composite accuracy of these methods is presented. The stringent requirements for single nucleotide polymorphism (SNP) discovery utilizing these approaches is discussed along with a review of studies that have successfully employed next-generation sequencing methods for large-scale SNP discovery. Ultimately, the application of these ultra-high-throughput sequencing methods for SNP discovery will open up new horizons for understanding human genomic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    PubMed  CAS  Google Scholar 

  2. Hillier, L. W., Marth, G. T., Quinlan, A. R., Dooling, D., Fewell, G. et al. (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188.

    Article  PubMed  CAS  Google Scholar 

  3. Bennett, S. T., Barnes, C., Cox, A., Davies, L. and Brown, C. (2005) Toward the 1,000 dollars human genome. Pharmacogenomics 6, 373–382.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett, S. (2004) Solexa Ltd. Pharmacogenomics 5, 433–438.

    Article  PubMed  Google Scholar 

  5. Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P. et al. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732.

    Article  PubMed  CAS  Google Scholar 

  6. Harris, T. D., Buzby, P. R., Babcock, H., Beer, E., Bowers, J. et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320, 106–109.

    Article  PubMed  CAS  Google Scholar 

  7. Mardis, E. R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614.

    Article  PubMed  CAS  Google Scholar 

  8. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y. et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 10, 997–1006.

    Article  Google Scholar 

  10. Glazov, E. A., Cottee, P. A., Barris, W. C., Moore, R. J., Dalrymple, B. P. et al. (2008) A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18, 957–964.

    Article  PubMed  CAS  Google Scholar 

  11. Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L. et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876.

    Article  PubMed  CAS  Google Scholar 

  12. Ng, P. C., Levy, S., Huang, J., Stockwell, T. B., Walenz, B. P. et al. (2008) Genetic variation in an individual human exome. PLoS Genet. 4, e1000160.

    Article  PubMed  Google Scholar 

  13. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  14. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J. et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  15. McCarroll, S. A. and Altshuler, D. M. (2007) Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–42.

    Article  PubMed  CAS  Google Scholar 

  16. http://www.ncbi.nlm.nih.gov/projects/SNP/

  17. http://genomics.xprize.org/

  18. Ewing, B., Hillier, L., Wendl, M. C. and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  19. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  20. Paez, J. G., Lin, M., Beroukhim, R., Lee, J. C., Zhao, X. et al. (2004) Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. 32, e71.

    Article  PubMed  Google Scholar 

  21. Huang, H. and Keohavong, P. (1996) Fidelity and predominant mutations produced by deep vent wild-type and exonuclease-deficient DNA polymerases during in vitro DNA amplification. DNA Cell Biol. 15, 589–594.

    Article  PubMed  CAS  Google Scholar 

  22. http://www.appliedbiosystems.com

  23. Heiner, C. R., Hunkapiller, K. L., Chen, S. M., Glass, J. I. and Chen, E. Y. (1998) Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res. 8, 557–561.

    PubMed  CAS  Google Scholar 

  24. Keohavong, P. and Thilly, W. G. (1989) Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acad. Sci. U. S. A. 86, 9253–9257.

    Article  PubMed  CAS  Google Scholar 

  25. Brockman, W., Alvarez, P., Young, S., Garber, M., Giannoukos, G. et al. (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res. 18, 763–770.

    Article  PubMed  CAS  Google Scholar 

  26. Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L. and Welch, D. M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8, R143.

    Article  PubMed  Google Scholar 

  27. Wicker, T., Schlagenhauf, E., Graner, A., Close, T. J., Keller, B. et al. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.

    Article  PubMed  Google Scholar 

  28. Dohm, J. C., Lottaz, C., Borodina, T. and Himmelbauer, H. (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105.

    Article  PubMed  Google Scholar 

  29. Bhangale, T. R., Stephens, M. and Nickerson, D. A. (2006) Automating resequencing-based detection of insertion-deletion polymorphisms Nat. Genet. 38, 1457–1462.

    Article  PubMed  CAS  Google Scholar 

  30. http://www.1000genomes.org

  31. Chen, F., Alessi, J., Kirton, E., Singan, V. and Richardson, P. (2006) Comparison of 454 sequencing platform with traditional Sanger sequencing: a case study with de novo sequencing of Prochlorococcus marinus NATL2A genome. Poster LBNL 59003. Plant & Animal Genome XIV Conference, January 14–18, 2006 (San Diego, CA).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC 2003

About this protocol

Cite this protocol

Chan, E.Y. (2009). Next-Generation Sequencing Methods: Impact of Sequencing Accuracy on SNP Discovery. In: Komar, A. (eds) Single Nucleotide Polymorphisms. Methods in Molecular Biology™, vol 578. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-411-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-411-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-410-4

  • Online ISBN: 978-1-60327-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics