Skip to main content

Cell-Free DNA: Applications in Different Diseases

  • Protocol
  • First Online:
Cell-free DNA as Diagnostic Markers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1909))

Abstract

Since its discovery in human blood plasma about 70 years ago, circulating cell-free DNA (cfDNA) has become an attractive subject of research as noninvasive disease biomarker. The interest in clinical applications has gained an exponential increase, making it a popular and potential target in a wide range of research areas.

cfDNA can be found in different body fluids, both in healthy and not healthy subjects. The recent and rapid development of new molecular techniques is promoting the study and the identification of cfDNA, holding the key to minimally invasive diagnostics, improving disease monitoring, clinical decision, and patients’ outcome.

cfDNA has already given a huge impact on prenatal medicine, and it could become, in the next future, the standard of care also in other fields, from oncology to transplant medicine and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandel P, Métais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. Biologie 3–4:241–243

    Google Scholar 

  2. Cicchillitti L, Corrado G, De Angeli M et al (2017) Circulating cell-free DNA content as blood based biomarker in endometrial cancer. Oncotarget 8(70):115230–115243

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fleischhacker M, Schimdt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775:181–232

    CAS  PubMed  Google Scholar 

  4. Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665

    CAS  PubMed  Google Scholar 

  5. Stroun M, Maurice P, Vasioukhin V et al (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168

    Article  CAS  PubMed  Google Scholar 

  6. Stroun M, Lyautey J, Lederrey C et al (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 313(1–2):139–142

    Article  CAS  PubMed  Google Scholar 

  7. Canzoniero JV, Park BH (2016) Use of cell free DNA in breast oncology. Biochim Biophys Acta 1865(2):266–274

    CAS  PubMed  Google Scholar 

  8. Stötzer OJ, Lehner J, Fersching-Gierlich D et al (2014) Diagnostic relevance of plasma DNA and DNA integrity for breast cancer. Tumour Biol 35(2):1183–1191

    Article  PubMed  CAS  Google Scholar 

  9. Lui YY, Chik KW, Chiu RW et al (2002) Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 48(3):421–427

    CAS  PubMed  Google Scholar 

  10. Elshimali YI, Khaddour H, Sarkissyan M et al (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799

    Article  CAS  PubMed  Google Scholar 

  12. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giacona MB et al (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17(1):89–97

    Article  CAS  PubMed  Google Scholar 

  14. Tsumita T, Iwanaga M (1963) Fate of injected deoxyribonucleic acid in mice. Nature 198:1088–1089

    Article  CAS  PubMed  Google Scholar 

  15. Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64(1):218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Snyder MW, Kircher M, Hill AJ et al (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164(1–2):57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagata S, Nagase H, Kawane K et al (2003) Degradation of chromosomal DNA during apoptosis. Cell Death Differ 10:108–116

    Article  CAS  PubMed  Google Scholar 

  18. Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617

    Article  CAS  PubMed  Google Scholar 

  19. Nagata S (2005) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875

    Article  CAS  PubMed  Google Scholar 

  20. Karachaliou N, Sosa EA, Molina MA et al (2017) Possible application of circulating free tumor DNA in non-small cell lung cancer patients. J Thorac Dis 9(suppl 13):S1364

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stroun M, Lyautey J, Lederrey C et al (2001) Alu repeat sequences are present in increased proportions compared to a unique gene in plasma/serum DNA: evidence for a preferential release from viable cells? Ann N Y Acad Sci 945:258–264

    Article  CAS  PubMed  Google Scholar 

  22. Van der Vaart M, Pretorius PJ (2008) Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci 1137:18–26

    Article  PubMed  CAS  Google Scholar 

  23. Anker P, Stroun M, Maurice PA (1975) Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res 35:2375–2382

    CAS  PubMed  Google Scholar 

  24. Van der Vaart M, Pretorius PJ (2007) The origin of circulating free DNA. Clin Chem 53:2215

    Article  PubMed  CAS  Google Scholar 

  25. Gardiner C, Harrison P, Belting M et al (2015) Extracellular vesicles, tissue factor, cancer and thrombosis—discussion themes of the ISEV 2014 Educational Day. J Extracell Vesicles 4:26901

    Article  PubMed  CAS  Google Scholar 

  26. Ho MW (2009) Intercommunication via circulating nucleic acids. Sci Soc 42:46–48

    Google Scholar 

  27. Tan EM, Schur PH, Carr RI et al (1966) Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 45(11):1732–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650

    CAS  PubMed  Google Scholar 

  29. Shapiro B, Chakrabarty M, Cohn EM et al (1983) Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51(11):2116–2120

    Article  CAS  PubMed  Google Scholar 

  30. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487

    Article  CAS  PubMed  Google Scholar 

  31. Rainer TH, Wong LK, Lam W et al (2003) Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 49(4):562–569

    Article  CAS  PubMed  Google Scholar 

  32. Chang Y, Chia RH, Wu TL et al (2003) Elevated cell-free DNA detected in patients with myocardial infarction. Clin Chim Acta 327:95–101

    Article  CAS  PubMed  Google Scholar 

  33. Frank OM (2016) Circulating cell-free DNA differentiates severity of inflammation. Biol Res Nurs 18(5):477–488

    Article  CAS  PubMed  Google Scholar 

  34. Chan AK, Chiu RW, Lo YM et al (2003) Cell-free nucleic acids in plasma, serum and urine: a new tool in molecular diagnosis. Ann Clin Biochem 40(Pt 2):122–130

    Article  CAS  PubMed  Google Scholar 

  35. Salvi S, Gurioli G, De Giorgi U et al (2016) Cell-free DNA as a diagnostic marker for cancer: current insights. Onco Targets Ther 9:6549–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin SY, Linehan JA, Wilson TG (2017) Emerging utility of urinary cell-free nucleic acid biomarkers for prostate, bladder, and renal cancers. Eur Urol Focus 3(2–3):265–272

    Article  PubMed  Google Scholar 

  37. Botezatu I, Serdyuk O, Potapova G et al (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46(8 Pt 1):1078–1084

    CAS  PubMed  Google Scholar 

  38. Casadio V, Calistri D, Salvi S et al (2013) Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. Biomed Res Int 2013:270457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Garzón M, Villatoro S, Teixidó C et al (2016) KRAS mutations in the circulating free DNA (cfDNA) of non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res 5(5):511–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Papageorgiou EA, Karagrigoriou A, Tsaliki E et al (2011) Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17(4):510–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lo YM, Tein MS, Lau TK (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62(4):768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerson KD, O’Brien BM (2018) Cell-free DNA. Screening for single-gene disorders and determination of fetal rhesus D genotype. Obstet Gynecol Clin N Am 45:27–39

    Article  Google Scholar 

  43. Liao GJ, Gronowski AM, Zhao Z et al (2014) Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clin Chim Acta 428:44–50

    Article  CAS  PubMed  Google Scholar 

  44. Ashoor G, Syngelaki A, Poon LC et al (2013) Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 41(1):26–32

    Article  CAS  PubMed  Google Scholar 

  45. Chitty LS, Griffin DR, Meaney C et al (2011) New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol 37(3):283–289

    Article  CAS  PubMed  Google Scholar 

  46. Amicucci P, Gennarelli M, Novelli G et al (2000) Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin Chem 46(2):301–302

    CAS  PubMed  Google Scholar 

  47. Chitty LS, Bianchi DW (2013) Noninvasive prenatal testing: the paradigm is shifting rapidly. Prenat Diagn 33(6):511–513

    Article  PubMed  Google Scholar 

  48. Hill M, Barrett AN, White H et al (2012) Uses of cell free fetal DNA in maternal circulation. Best Pract Res Clin Obstet Gynaecol 26(5):639–654

    Article  PubMed  Google Scholar 

  49. Finning K, Martin P, Daniels G (2004) A clinical service in the UK to predict fetal Rh (Rhesus) D blood group using free fetal DNA in maternal plasma. Ann N Y Acad Sci 1022:119–123

    Article  CAS  PubMed  Google Scholar 

  50. Fiorentino F, Bono S, Pizzuti F et al (2017) The clinical utility of genome-wide non invasive prenatal screening. Prenat Diagn 37(6):593–601

    Article  CAS  PubMed  Google Scholar 

  51. Ulrich BC, Cloud PP (2018) Cell-free DNA in oncology: gearing up for clinic. Ann Lab Med 38:1–8

    Article  PubMed  Google Scholar 

  52. Sozzi G, Conte D, Leon M et al (2003) Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 21(21):3902–3908

    Article  CAS  PubMed  Google Scholar 

  53. Shao X, He Y, Ji M et al (2015) Quantitative analysis of cell-free DNA in ovarian cancer. Oncol Lett 10(6):3478–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990

    Article  CAS  PubMed  Google Scholar 

  55. Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holdhoff M, Schmidt K, Donehower R et al (2009) Analysis of circulating tumor DNA to confirm somatic KRAS mutations. J Natl Cancer Inst 101(18):1284–1285

    Article  PubMed  Google Scholar 

  57. Alix-Panabières C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6(5):479–491

    Article  PubMed  CAS  Google Scholar 

  58. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437

    Article  CAS  PubMed  Google Scholar 

  59. Cheng F, Su L, Qian C et al (2016) Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 7(30):48832–48841

    PubMed  PubMed Central  Google Scholar 

  60. Li J, Dittmar R, Xia S (2017) Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol Oncol 11:11099–11111

    Google Scholar 

  61. Soave A, Chun FK, Hillebrand T et al (2017) Copy number variations of circulating, cell-free DNA in urothelial carcinoma of the bladder patients treated with radical cystectomy: a prospective study. Oncotarget 8:56398–56407

    Article  PubMed  PubMed Central  Google Scholar 

  62. Husain H, Nykin D, Bui N et al (2016) Cell-free DNA from ascites and pleural effusions: molecular insights into genomic aberrations and disease biology. Mol Cancer Ther 16:948–955

    Article  CAS  Google Scholar 

  63. Li Z, Guo X, Tang L (2016) Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfate next-generation sequencing. Tumour Biol 37:13111–13119

    Article  CAS  PubMed  Google Scholar 

  64. De Mattos-Arruda L, Caldas C (2016) Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol 10(3):464–474

    Article  PubMed  CAS  Google Scholar 

  65. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61(1):112–123

    Article  CAS  PubMed  Google Scholar 

  66. Lewis AR, Valle JW, McNamara MG (2016) Pancreatic cancer: are “liquid biopsies” ready for prime-time? World J Gastroenterol 22(32):7175–7185

    Article  PubMed  PubMed Central  Google Scholar 

  67. Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY et al (2018) The dawn of the liquid biopsy in the fight against cancer. Oncotarget 9(2):2912–2922

    Article  PubMed  Google Scholar 

  68. Sundaresan TK, Haber DA (2015) Does molecular monitoring matter in early-stage breast cancer? Sci Transl Med 7(302):302fs35

    Article  PubMed  Google Scholar 

  69. Yanagita M, Redig AJ, Paweletz CP et al (2016) A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR-mutant non-small cell lung Cancer patients treated with Erlotinib on a phase II trial. Clin Cancer Res 22(24):6010–6020

    Article  CAS  PubMed  Google Scholar 

  70. Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20(6):1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112

    Article  CAS  PubMed  Google Scholar 

  72. Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schiavon G, Hrebien S, Garcia-Murillas I et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7(313):313ra182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lallous N, Volik SV, Awrey S et al (2016) Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Azad AA, Volik SV, Wyatt AW et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21(10):2315–2324

    Article  CAS  PubMed  Google Scholar 

  76. Siravegna G, Mussolin B, Buscarino M et al (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21(7):795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morelli MP, Overman MJ, Dasari A et al (2015) Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol 26(4):731–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jänne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372(18):1689–1699

    Article  PubMed  Google Scholar 

  79. Sequist LV, Soria JC, Goldman JW et al (2015) Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med 372(18):1700–1709

    Article  PubMed  Google Scholar 

  80. https://molecular.roche.com/assays/cobas-egfr-mutation-test-v2/

  81. Truszewska A, Foroncewicz B, Pączek L (2017) The role and diagnostic value of cell-free DNA in systemic lupus erythematosus. Clin Exp Rheumatol 35(2):330–336

    PubMed  Google Scholar 

  82. Glebova KV, Veiko NN, Nikonov AA et al (2018) Cell-free DNA as a biomarker in stroke: current status, problems and perspectives. Crit Rev Clin Lab Sci 55(1):55–70

    Article  CAS  PubMed  Google Scholar 

  83. Snyder TM, Khush KK, Valantine HA et al (2011) Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A 108(15):6229–6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. El Messaoudi S, Rolet F, Mouliere F et al (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ranucci, R. (2019). Cell-Free DNA: Applications in Different Diseases. In: Casadio, V., Salvi, S. (eds) Cell-free DNA as Diagnostic Markers. Methods in Molecular Biology, vol 1909. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8973-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8973-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8972-0

  • Online ISBN: 978-1-4939-8973-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics