Skip to main content

Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Due to the difficulties found when generating fully human monoclonal antibodies (mAbs) by the traditional method, several efforts have attempted to overcome these problems, with varying levels of success. One approach has been the development of transgenic mice carrying immunoglobulin (Ig) genes in germline configuration. The engineered mouse genome can undergo productive rearrangement in the B-cell population, with the generation of mouse B lymphocytes expressing human Ig (hIg) chains. To avoid the expression of mouse heavy or light chains, the endogenous mouse Ig (mIg) loci must be silenced by gene-targeting techniques. Subsequently, to obtain antigen-specific mAbs, conventional immunization protocols can be followed and the mAb technique used (fusion of activated B cells with mouse myeloma cells, screening, cloning, freezing, and testing) with these animThis chapter summarizes the most common chromatographic mAb andals expressing human Ig genes. This chapter describes the type of transgenic-knockout mice generated for various research groups, provides examples of human mAbs developed by research groups and companies, and includes protocols of immunization, generation, production, and purification of human mAbs from such mice. In addition, it also addresses the problems detected, and includes some of the methods that can be used to analyze functional activities with human mAbs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  2. Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306:517–522

    Article  CAS  PubMed  Google Scholar 

  3. Stas P, Pletinckx J, Gansemans Y, Lasters I (2009) Immunogenicity assessment of antibody therapeutics. In: Melvyn Little ATA (ed) Recombinant antibodies for immunotherapy. Cambridge University Press, Cambridge

    Google Scholar 

  4. Lo BKC (2005) Protein therapeutics: mouse, humanized and human antibodies. In: Walker JM, Rapley R (eds) Medical methods handbook. Springer, New York, pp 429–446

    Google Scholar 

  5. Arruebo M, Vilaboa N, Sáez Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3:3279–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elbakri A, Nelson PN, Abu Odeh RO (2010) The state of antibody therapy. Hum Immunol 71:1243–1250

    Article  CAS  PubMed  Google Scholar 

  7. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338

    Article  CAS  PubMed  Google Scholar 

  8. Chester KA, Begent RH, Robson L, Keep P, Pedley RB, Boden JA et al (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343:455–456

    Article  CAS  PubMed  Google Scholar 

  9. Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20:450–459

    Article  CAS  PubMed  Google Scholar 

  10. Bratkovic T (2010) Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 67:749–767

    Article  CAS  PubMed  Google Scholar 

  11. Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM (1992) Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89:1223–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheeley D, Merrill B, Taylor L (1997) Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem 247:102–110

    Article  CAS  PubMed  Google Scholar 

  13. Borrebaeck CK, Malmborg AC, Ohlin M (1993) Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol Today 14:477–479

    Article  CAS  PubMed  Google Scholar 

  14. Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T et al (1991) Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood 78:2973–2981

    CAS  PubMed  Google Scholar 

  15. McCune JM (1996) Development and applications of the SCID-hu mouse model. Semin Immunol 8:187–196

    Article  CAS  PubMed  Google Scholar 

  16. Eren R, Lubin I, Terkieltaub D, Ben-Moshe O, Zauberman A, Uhlmann R et al (1998) Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system. Immunology 93:154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Storb U (1987) Transgenic mice with immunoglobulin genes. Annu Rev Immunol 5:151–174

    Article  CAS  PubMed  Google Scholar 

  18. Brinster RL, Ritchie KA, Hammer RE, O'Brien RL, Arp B, Storb U (1983) Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice. Nature 306:332–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rusconi S, Köhler G (1985) Transmission and expression of a specific pair of rearranged immunoglobulin mu and kappa genes in a transgenic mouse line. Nature 314:330–334

    Article  CAS  PubMed  Google Scholar 

  20. Grosschedl R, Weaver D, Baltimore D, Costantini F (1984) Introduction of a mu immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody. Cell 38:647–658

    Article  CAS  PubMed  Google Scholar 

  21. González-Fernández A, Milstein C (1993) Analysis of somatic hypermutation in mouse Peyer’s patches using immunoglobulin kappa light-chain transgenes. Proc Natl Acad Sci U S A 90:9862–9866

    Article  PubMed  PubMed Central  Google Scholar 

  22. Betz AG, Milstein C, González-Fernández A, Pannell R, Larson T, Neuberger MS (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77:239–248

    Article  CAS  PubMed  Google Scholar 

  23. Yélamos J, Klix N, Goyenechea B, Lozano F, Chui YL, González-Fernández A, Pannell R, Neuberger MS, Milstein C (1995) Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376:225–229

    Article  PubMed  Google Scholar 

  24. Wagner S, Popov A, Davies S, Xian J, Neuberger M, Brüggemann M (1994) The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur J Immunol 24:2672–2681

    Article  CAS  PubMed  Google Scholar 

  25. Brüggemann M, Taussig MJ (1997) Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 8:455–458

    Article  PubMed  Google Scholar 

  26. Jakobovits A, Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM et al (1995) Production of antigen-specific human antibodies from mice engineered with human heavy and light chain YACs. Ann N Y Acad Sci 764:525–535

    Article  CAS  PubMed  Google Scholar 

  27. Brüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B, Buelow R (2015) Human antibody production in transgenic mice. Arch Immunol Ther Exp 63:101–108

    Article  CAS  Google Scholar 

  28. Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 86:6709–6713

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zou X, Xian J, Davies N, Popov A, Brüggemann M (1996) Dominant expression of a 1.3 Mb human Ig kappa locus replacing mouse light chain production. FASEB J 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  30. Taylor L, Carmack C, Schramm S, Mashayekh R, Higgins K, Kuo C et al (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res 20:6287–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859

    Article  CAS  PubMed  Google Scholar 

  32. Brüggemann M, Neuberger MS (1996) Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today 17:391–397

    Article  PubMed  Google Scholar 

  33. Wagner SD, Gross G, Cook GP, Davies SL, Neuberger MS (1996) Antibody expression from the core region of the human IgH locus reconstructed in transgenic mice using bacteriophage P1 clones. Genomics 35:405–414

    Article  CAS  PubMed  Google Scholar 

  34. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21

    Article  CAS  PubMed  Google Scholar 

  35. Mendez M, Green L, Corvalan JR, Jia X, Maynard-Currie C, Yang X et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  CAS  PubMed  Google Scholar 

  36. Jakobovits A (1998) Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Adv Drug Deliv Rev 31(1–2):33–42

    Article  CAS  PubMed  Google Scholar 

  37. Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143

    Article  CAS  PubMed  Google Scholar 

  38. Murphy AJ, Macdonald LE, Stevens S et al (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 111:5153–5158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Macdonald LE, Karow M, Stevens S, Auerbach W, Poueymirou WT, Yasenchak J, Frendewey D, Valenzuela DM, Giallourakis CC, Alt FW, Yancopoulos GD, Murphy AJ (2014) Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc Natl Acad Sci U S A 111:5147–5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sano A, Matsushita H, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y (2013) Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle. PLoS One 8:e78119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsushita H, Sano A, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y (2014) Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production. PLoS One 9:e90383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Davies NP, Rosewell IR, Richardson JC, Cook GP, Neuberger MS, Brownstein BH, Norris ML, Brüggemann M (1993) Creation of mice expressing human antibody light chains by introduction of a yeast artificial chromosome containing the core region of the human immunoglobulin kappa locus. Biotechnology (N Y) 11:911–914

    CAS  Google Scholar 

  43. Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851

    Article  CAS  PubMed  Google Scholar 

  44. Popov A, Zou X, Xian J, Nicholson I, Brüggemann M (1999) A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J Exp Med 189:1611–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF et al (1993) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5:647–656

    Article  CAS  PubMed  Google Scholar 

  47. Nitschke L, Kosco M, Köhler G, Lamers M (1993) Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc Natl Acad Sci U S A 90:1887–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oettgen H, Martin T, Wynshaw-Boris A, Deng C, Drazen J, Leder P (1994) Active anaphylaxis in IgE-deficient mice. Nature 370:367–370

    Article  CAS  PubMed  Google Scholar 

  49. Erlandsson L, Andersson K, Sigvardsson M, Lycke N, Leanderson T (1998) Mice with an inactivated joining chain locus have perturbed IgM secretion. Eur J Immunol 28:2355–2365

    Article  CAS  PubMed  Google Scholar 

  50. Ménoret S, Iscache AL, Tesson L, Rémy S, Usal C, Osborn MJ, Cost GJ, Brüggemann M, Buelow R, Anegon I (2010) Characterization of Immunoglobulin heavy chain knockout rats. Eur J Immunol 40:2932–2941

    Article  PubMed  CAS  Google Scholar 

  51. Zou Y, Takeda S, Rajewsky K (1993) Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J 12:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takeda S, Zou YR, Bluethmann H, Kitamura D, Muller U, Rajewsky K (1993) Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J 12:2329–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Trounstine M, Kurahara C, Young F, Kuo CC, Xu Y et al (1993) B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J 12:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanchez P, Drapier AM, Cohen-Tannoudji M, Colucci E, Babinet C, Cazenave PA (1994) Compartmentalization of lambda subtype expression in the B cell repertoire of mice with a disrupted or normal C kappa gene segment. Int Immunol 6:711–719

    Article  CAS  PubMed  Google Scholar 

  55. Zou X, Xian J, Popov AV, Rosewell IR, Müller M, Brüggemann M (1995) Subtle differences in antibody responses and hypermutation of lambda light chains in mice with a disrupted chi constant region. Eur J Immunol 25:2154–2162

    Article  CAS  PubMed  Google Scholar 

  56. Green LL, Jakobovits A (1998) Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J Exp Med 188:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zou X, Piper T, Smith J, Allen N, Xian J, Brüggemann M (2003) Block in development at the pre-B-II to immature B cell stage in mice without Ig kappa and Ig lambda light chain. J Immunol 170:1354–1361

    Article  CAS  PubMed  Google Scholar 

  58. Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nicholson I, Zou X, Popov A, Cook G, Corps E, Humphries S et al (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906

    CAS  PubMed  Google Scholar 

  60. Pruzina S, Williams G, Kaneva G, Davies S, Martín-López A, Brüggemann M et al (2011) Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng Des Sel 24:791–799

    Article  CAS  PubMed  Google Scholar 

  61. Magadán S, Valladares M, Suarez E, Sanjuán I, Molina A, Ayling C et al (2002) Production of antigen-specific human monoclonal antibodies: comparison of mice carrying IgH/kappa or IgH/kappa/lambda transloci. Biotechniques 33:680–684

    Article  PubMed  Google Scholar 

  62. Molina A, Valladares M, Sancho D, Viedma F, Sanjuan I, Gambón F, Sánchez-Madrid F, González-Fernández A (2003) The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. J Immunol Methods 2823:147–158

    Article  CAS  Google Scholar 

  63. Suárez E, Magadán S, Sanjuán I, Valladares M, Molina A, Gambón F, Díaz-Espada F, González-Fernández A (2006) Rearrangement of only one human IGHV gene is sufficient to generate a wide repertoire of antigen specific antibody responses in transgenic mice. Mol Immunol 43:1827–1835

    Article  PubMed  CAS  Google Scholar 

  64. Díaz B, Sanjuan I, Gambón F, Loureiro C, Magadán S, González-Fernández A (2009) Generation of a human IgM monoclonal antibody directed against HLA class II molecules: a potential agent in the treatment of haematological malignancies. Cancer Immunol Immunother 58:351–360

    Article  PubMed  CAS  Google Scholar 

  65. Magadán S, Sanjuán I, Valladares M et al (2004) A new potential therapeutic agent against B cell malignancies. In: 12th annual international congress of immunology/4th annual conference of the Federation-of-Clinical-Immunology-Societies (FOCIS). Medimond International Proceedings, Montreal, Canada, pp 409–422

    Google Scholar 

  66. Xu J, Davis M (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45

    Article  CAS  PubMed  Google Scholar 

  67. Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97

    Article  CAS  PubMed Central  Google Scholar 

  68. Green L (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23

    Article  CAS  PubMed  Google Scholar 

  69. Spits H (2014) New models of human immunity. Nat Biotechnol 32:335–336

    Article  CAS  PubMed  Google Scholar 

  70. Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A et al (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102

    Article  CAS  PubMed  Google Scholar 

  71. Chen WC, Murawsky CM (2018) Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol 9:460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  CAS  PubMed  Google Scholar 

  73. Green LL (2014) Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies. Curr Drug Discov Technol 11:74–84

    Article  CAS  PubMed  Google Scholar 

  74. Lee EC, Liang Q, Ali H, Bayliss L, Beasley A, Bloomfield-Gerdes T, Bonoli L, Brown R, Campbell J, Carpenter A, Chalk S, Davis A, England N, Fane-Dremucheva A, Franz B, Germaschewski V, Holmes H, Holmes S, Kirby I, Kosmac M, Legent A, Lui H, Manin A, O'Leary S, Paterson J, Sciarrillo R, Speak A, Spensberger D, Tuffery L, Waddell N, Wang W, Wells S, Wong V, Wood A, Owen MJ, Friedrich GA, Bradley A (2014) Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol 32:356–363

    Article  CAS  PubMed  Google Scholar 

  75. Osborn MJ, Ma B, Avis S et al (2013) High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igkappa/Iglambda loci bearing the rat CH region. J Immunol 190:1481–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Galfrè G, Howe S, Milstein C, Butcher G, Howard J (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266:550–552

    Article  PubMed  Google Scholar 

  77. Galfrè G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 3:3–46

    Article  Google Scholar 

  78. Lefranc M (2003) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 31:307–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nilson B, Lögdberg L, Kastern W, Björck L, Akerström B (1993) Purification of antibodies using protein L-binding framework structures in the light chain variable domain. J Immunol Methods 164:33–40

    Article  CAS  PubMed  Google Scholar 

  80. Dewar V, Voet P, Denamur F, Smal J (2005) Industrial implementation of in vitro production of monoclonal antibodies. ILAR J 46:307–313

    Article  CAS  PubMed  Google Scholar 

  81. Parola C, Neumeier D, Reddy ST (2018) Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 153:31–41

    Article  CAS  PubMed  Google Scholar 

  82. Briney B, Sok D, Jardine JG, Kulp DW, Skog P, Menis S, Jacak R, Kalyuzhniy O, de Val N et al (2016) Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. Cell 166:1459–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH, Hoi KH, Chrysostomou C, Hunicke-Smith SP, Iverson BL, Tucker PW, Ellington AD, Georgiou G (2010) Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 28:965–969

    Article  CAS  PubMed  Google Scholar 

  84. Wang B, Kluwe CA, Lungu OI, DeKosky BJ, Kerr SA, Johnson EL, Jung J, Rezigh AB, Carroll SM, Reyes AN, Bentz JR, Villanueva I, Altman AL, Davey RA, Ellington AD, Georgiou G (2015) Facile discovery of a diverse panel of anti-Ebola virus antibodies by immune repertoire mining. Sci Rep 5:13926

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang B, Lee CH, Johnson EL, Kluwe CA, Cunningham JC, Tanno H et al (2016) Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs 8:1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the Xunta de Galicia (CINBIO, Centro singular de investigación de Galicia 2016-2019 ref. ED431G/02 and grupo de referencia competitiva ref. ED431C 2016041) and the European Union (European Regional Development Fund—ERDF) is gratefully acknowledged. S. Magadán has also received funding from People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 600391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to África González-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mompó, S.M., González-Fernández, Á. (2019). Antigen-Specific Human Monoclonal Antibodies from Transgenic Mice. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics