Skip to main content

Production of Other Bioproducts from Plant Oils

  • Chapter
  • First Online:
Plant Bioproducts

Abstract

Plant oils have many additional applications other than biofuel. Potential industrial applications of plant lipids include the production of lubricants, solvents, surfactants, bioplastics, and rubber. There has also been a surge of interest in the utilization of plants as “biofactories” for the production of bioactive oils for human nutrition. Several types of plant-derived lipids are used for such purposes, including fatty acids within triacylglycerol, wax esters, and lipid-based polymers. Attempts to engineer plants that synthesize high levels of useful lipids are ongoing; however, this approach has proven challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U et al (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arao K, Yotsumoto H, Han S-Y, Nagao K, Yanagita T (2004) The 9cis, 11trans, 13cis isomer of conjugated linolenic acid reduces apolipoprotein B100 secretion and triacylglycerol synthesis in HepG2 cells. Biosci Biotech Bioch 68:2643–2645

    Article  CAS  Google Scholar 

  • Badami RC, Patil KB (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19:119–153

    Article  CAS  PubMed  Google Scholar 

  • Bassaganya-Riera J, DiGuardo M, Climent M, Vives C, Carbo A, Jouni ZE, Einerhand AWC, O’Shea M, Hontecillas R (2011) Activation of PPARϒ and δ by dietary punicic acid ameliorates intestinal inflammation in mice. Br J Nutr 106:878–886

    Article  CAS  PubMed  Google Scholar 

  • Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J 68:387–399

    Article  CAS  PubMed  Google Scholar 

  • Bayon S, Chen G, Weselake RJ, Browse J (2015) A small phospholipase A2-α from castor catalyzes removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Plant Physiol 167:1259–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher B, Rujehan IN, Achdiawan R (2004) Rattan, rubber, or oil palm: cultural and financial considerations for farmers in Kalimantan. Econ Bot 58:S77–S87

    Article  Google Scholar 

  • Biester EM, Hellenbrand J, Gruber J, Hamberg M, Frentzen M (2012) Identification of avian wax synthases. BMC Biochem 13:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155:1690–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousquet J, Flahault A, Vandenplas O, Ameille J, Duron J-J, Pecquet C, Chevrie K, Annesi-Maesano I (2006) Natural rubber latex allergy among health care workers: a systematic review of the evidence. J Allergy Clin Immunol 118:447–454

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Ohlrogge JB (1994) Metabolic evidence for the involvement of a Δ4-palmitoyl-acyl carrier protein desaturase in petroselinic acid synthesis in coriander endosperm and transgenic tobacco cells. Plant Physiol 104:827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Becker CK, Shanklin J, Ohlrogge JB (1994) cDNAs for isoforms of the Δ9-stearoyl-acyl carrier protein desaturase from Thunbergia alata endosperm. Plant Physiol 106:807–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Coughlan SJ, Shanklin J (1997a) Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed. Plant Mol Biol 33:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Lindqvist Y, Schneider G, Shanklin J (1997b) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci U S A 94:4872–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Shah S, Shanklin J, Browse J (1998) A determinant of substrate specificity predicted from the acyl-acyl carrier protein desaturase of developing cat’s claw seed. Plant Physiol 117:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Ripp KG, Hall SE, McGonigle B (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol 128:615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson A (2009) Plant oils as feedstock alternatives to petroleum – a short survey of potential oil crop platforms. Biochimie 91:665–670

    Article  CAS  PubMed  Google Scholar 

  • Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288–2294

    Article  CAS  PubMed  Google Scholar 

  • Chen B, McClements DJ, Decker EA (2013) Design of foods with bioactive lipids for improved health. Annu Rev Food Sci Technol 4:35–56

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Woodfield HK, Pan X, Harwood JL, Weselake RJ (2015) Acyl-trafficking during plant oil accumulation. Lipids 50:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Chisholm MJ, Hopkins CY (1965) Fatty acids of doxantha seed oil. J Am Oil Chem Soc 42:49–50

    Article  CAS  Google Scholar 

  • Cornish K, Xie W (2012) Natural rubber biosynthesis in plants: rubber transferase. Methods Enzymol 515:63–82

    Article  CAS  PubMed  Google Scholar 

  • Das UN (2002) The lipids that matter from infant nutrition to insulin resistance. Prostag Leukotr Essent Fatty Acids 67:1–12

    Article  CAS  Google Scholar 

  • Davies HM, Hawkins DJ, Nelsen JS (1995) Lysophosphatidic acid acyltransferase from immature coconut endosperm having medium chain length substrate specificity. Phytochemistry 39:989–996

    Article  CAS  Google Scholar 

  • Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung: implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655

    Article  CAS  PubMed  Google Scholar 

  • Gasmi J, Sanderson JT (2010) Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. J Agric Food Chem 58:12149–12156

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL, Woodfield HK, Chen G, Weselake RJ (2017) Modification of oil crops to produce fatty acids for industrial applications. In: Ahmad M (ed) Fatty acids: chemistry, synthesis, and applications. Academic Press and AOCS Press, Urbana, pp 188–235

    Google Scholar 

  • Heilmann M, Iven T, Ahmann K, Hornung E, Stymne S, Feussner I (2012) Production of wax esters in plant seed oils by oleosomal co-targeting of biosynthetic enzymes. J Lipid Res 53:2153–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Ren Z, Lu C (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol 158:1944–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi M, Miyazawa T (2000) Newly recognized cytotoxic effect of conjugated trienoic fatty acids on cultured human tumor cells. Cancer Lett 148:173–179

    Article  CAS  PubMed  Google Scholar 

  • Imle EP (1978) Hevea rubber – past and future. Econ Bot 32:264–277

    Article  Google Scholar 

  • Innis SM (2000) The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci-Basel 22:474–480

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stienbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Mietkiewska E, Barton DL, Gibilin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in non-functional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem 269:56255631

    Article  CAS  Google Scholar 

  • Kim HU, Lee K-R, Go YS, Jung JH, Suh M-C, Kim JB (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52:983–993

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Silva JE, Vu HS, Mockaitis K, Nam J-W, Cahoon EB (2015) Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. J Exp Bot 66:4251–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies M, Voelker TA (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M (2002) Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37:343–350

    Article  CAS  PubMed  Google Scholar 

  • Koba K, Imamura J, Akashoshi A, Murase-Kohno J, Nishizono S et al (2007) Genetically modified rapeseed oil containing cis-9, trans-11, cis-13 octadecatrienoic acid affects body fat mass and lipid metabolism in mice. J Agric Food Chem 55:3781–3748

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1970) Plant waxes. Lipids 5:259–275

    Article  CAS  Google Scholar 

  • Kroon JTM, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    Article  CAS  PubMed  Google Scholar 

  • Lardizabal KD, Metz JG, Ssakamoto T, Hutton WC, Pollard MR, Lassner MW (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol 122:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassner MW, Levering CK, Davies HM, Knutzon DS (1995) Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol 109:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Reinhard Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Yu K, Hatanaka T, Hildebrand DF (2010) Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnol J 8:184–195

    Article  CAS  PubMed  Google Scholar 

  • Li X, van Loo EN, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu L-H (2012) Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnol J 10:862–870

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106:18837–18842

    Article  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed  PubMed Central  CAS  Google Scholar 

  • McKeon TA (2016) Brassica spp. oils. In: McKeon TA, Hildebrand DF, Hayes DG, Weselake RJ (eds) Industrial oil crops. Elsevier/AOCS Press, New York/Urbana, pp 75–112

    Chapter  Google Scholar 

  • McVetty PBE, Mietkiewska E, Omonov T, Curtis J, Taylor DC, Weselake RJ (2016) Brassica spp. oils. In: McKeon TA, Hildebrand DF, Hayes DG, Weselake RJ (eds) Industrial oil crops. Elsevier/AOCS Press, New York/Urbana, pp 113–156

    Chapter  Google Scholar 

  • Mietkiewska E, Miles R, Wickramarathna A, Sahibollah AF, Greer MS, Chen G, Weselake RJ (2014) Combined transgenic expression of Punica granatum conjugase (FADX) and FAD2 desaturase in high linoleic acid Arabidopsis thaliana mutant leads to increased accumulation of punicic acid. Planta 240:575–583

    Article  CAS  PubMed  Google Scholar 

  • Mirmiran P, Fazeli MR, Asghari G, Shafiee A, Azizi F (2010) Effect of pomegranate seed oil on hyperlipidaemic subjects: a double-blind placebo-controlled clinical trial. Br J Nutr 104:402–406

    Article  CAS  PubMed  Google Scholar 

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS et al (2003) Consumption of fish and n-3 fatty acids and the risk incident of Alzheimer disease. Arch Neurol-Chicago 60:940–946

    Article  PubMed  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:329–336

    Article  CAS  Google Scholar 

  • Nath UK, Wilmer JA, Wallington EJ, Becker HC, Mollers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Genet 118:765–773

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge JB, Pollard MR, Stumpf PK (1978) Studies on the biosynthesis of waxes by developing jojoba seed tissue. Lipids 13:203–210

    Article  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onokpise O, Louime C (2012) The potential of the South American leaf blight as a biological agent. Sustainability 4:3151–3157

    Article  Google Scholar 

  • Pan X, Chen G, Kazachkov M, Greer MS, Caldo KM, Zou J, Weselake RJ (2015) In vivo and in vitro evidence for biochemical coupling of reactions catalyzed by lysophosphatidylcholine acyltransferase and diacyglycerol acyltransferase. J Biol Chem 290:18068–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauly D, Watson R, Alder J (2005) Global trends in world fisheries: impacts on marine ecosystems and food security. Philos Trans R Soc London B 360:5–12

    Article  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J et al (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  • Rauber P (2011) Beyond oil in 20 years. Sierra Magazine. Available online at: http://vault.sierraclub.org/sierra/201101/beyondoil.aspx

  • Richardson AJ, Puri BK (2002) A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuro-Psychopharmacol Biol Psychiatry 26:233–239

    Article  CAS  Google Scholar 

  • Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679

    Article  CAS  PubMed  Google Scholar 

  • Rose DP, Connolly JM (1999) Omega-3-fatty acids as cancer chemopreventive agents. Pharmacol Ther 83:217–224

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77:198–208

    Article  CAS  PubMed  Google Scholar 

  • Schierholt A, Becker HC, Ecke W (2000) Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet 101:897–901

    Article  CAS  Google Scholar 

  • Shinohara N, Tsuduki T, Ito J, Honma T, Kijima R, Sugawara S, Arai T, Yamasaki M, Ikezaki A, Yokoyama M, Nishiyama K, Nakagawa K, Miyazawa T, Ikeda I (2012) Jacaric acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo. BBA-Mol Cell Biol L 1821:980–988

    Article  CAS  Google Scholar 

  • Spilmont M, Léotoing L, Davicco M-J, Lebecque P, Mercier S, Miot-Noirault E, Pilet P, Rios L, Wittrant Y, Coxam V (2013) Pomegranate seed oil prevents bone loss in a mice model of osteoporosis, through osteoblastic stimulation, osteoclastic inhibition and decreased inflammatory status. J Nutr Biochem 24:1840–1848

    Article  CAS  PubMed  Google Scholar 

  • Ståhl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banaś W, Banaś A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturgeon SR, Ronnenberg AG (2010) Pomegranate and breast cancer: possible mechanisms of prevention. Nutr Rev 68:122–128

    Article  PubMed  Google Scholar 

  • Subedi K, Yu H-M, Weselake RJ, Meesapyodsuk D, Qiu X, Shah S, Field CJ (2015) Stearidonic acid- enriched flax oil reduces the growth of human breast cancer in vitro and in vivo. Breast Cancer Res Treat 149:17–29

    Article  CAS  PubMed  Google Scholar 

  • Suriyamongkoi P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – a review. Biotechnol Adv 25:148–175

    Article  CAS  Google Scholar 

  • Takagi Y, Rahman SM (1996) Inheritance of high oleic acid content in the seed oil of soybean mutant M23. Theor Appl Genet 92:179–182

    Article  CAS  PubMed  Google Scholar 

  • Taylor DC, Smith MA, Fobert P, Mietkiewska E, Weselake RJ (2011) Plant systems – metabolic engineering of higher plants to produce bio-industrial oils. In: Moo-Young M (ed) Comprehensive biotechnology, vol 4, 2nd edn. Elsevier, Amsterdam, pp 67–85

    Chapter  Google Scholar 

  • Tsuzuki T, Tokuyama Y, Igarashi M, Miyazawa T (2004) Tumor growth suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 25:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529

    Article  CAS  PubMed  Google Scholar 

  • Van Erp H, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 155:683–693

    Article  CAS  PubMed  Google Scholar 

  • Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG (2013) Metabolic engineering of plant oils and waxes for industrial feedstocks. Plant Biotechnol J 11:197–210

    Article  CAS  PubMed  Google Scholar 

  • Venegas-Calerón M, Sayanova O, Napier JA (2010) An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

    Article  CAS  PubMed  Google Scholar 

  • Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9:229–241

    Article  CAS  Google Scholar 

  • Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range acyl-acyl-carrier-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vroegrijk IOCM, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassanganya-Riera J, Zondag GCM, Romijn JA, Havekes LM, Voshol PJ (2011) Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol 49:1426–1430

    Article  CAS  PubMed  Google Scholar 

  • Weselake RJ, Woodfield HK, Field CJ, Harwood JL (2017) Production of edible oils through metabolic engineering. In: Akoh C (ed) Food lipids –chemistry, nutrition, and biotechnology, 4th edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 973–995

    Chapter  Google Scholar 

  • Wiberg E, Edwards P, Byrne J, Stymne S, Dehesh K (2000) The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. Planta 212:33–40

    Article  CAS  PubMed  Google Scholar 

  • Williams CM, Burdge G (2006) Long-chain n-3 PUFA: plant v marine sources. Proc Nutr Soc 65:42–50

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Wang G, Li J, Bates PD, Wang X, Allen DK (2017) Phospholipase D enhances diacylglycerol flux into triacylglycerol. Plant Physiol 174:110–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoo EM, Valente JG, Grattan I, Schmidt SL, Platt I, Silbergeld EK (2003) Low level methylmerucury exposure affects neurophysiological function in adults. Environ Health 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu K, McCracken CT, Li R, Hildebrand DF (2006) Diacylglycerol acyltransferases from Vernonia and Stokesia prefer substrates with vernolic acid. Lipids 41:557–566

    Article  CAS  PubMed  Google Scholar 

  • Yu H-M, Newell M, Subedi K, Weselake RJ, Mazurak V, Field CJ (2015) Bypassing the Δ6-desaturase enzyme and directly providing n-3 and n-6 PUFA pathway intermediates reduces the survival of two human breast cancer cell lines. Eur J Lipid Sci Technol 117: 1378–1390

    Article  CAS  Google Scholar 

  • Yurchenko OP, Nykiforuk CL, Moloney MM, Stahl U, Banas A, Stymne S, Weselake RJ (2009) A 10 kDa acyl-CoA binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotechnol J 7:602–610

    Article  CAS  PubMed  Google Scholar 

  • Zhang LS, Tan Y, Ouyang YL, Wang RS (1991) Effects of high erucic acid rapeseed oil on fatty acid oxidation in rat liver. Biomed Environ Sci 4:262–267

    PubMed  CAS  Google Scholar 

  • Zhu L-H, Krens F, Smith MA, Li X, Qi W, van Loo EN, Iven T, Feussner I, Nazarenus TJ, Huai D, Taylor DC, Zhour X-R, Green AG, Shockey J, Klasson KT, Mullen RT, Huang B, Dyer JM, Cahoon E (2016) Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep 6:22181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy D. Singer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singer, S.D., Weselake, R.J. (2018). Production of Other Bioproducts from Plant Oils. In: Chen, G., Weselake, R., Singer, S. (eds) Plant Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8616-3_5

Download citation

Publish with us

Policies and ethics