Skip to main content

Real-Time Digital Bright Field Technology for Rapid Antibiotic Susceptibility Testing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1736))

Abstract

Optical scanning through bacterial samples and image-based analysis may provide a robust method for bacterial identification, fast estimation of growth rates and their modulation due to the presence of antimicrobial agents. Here, we describe an automated digital, time-lapse, bright field imaging system (oCelloScope, BioSense Solutions ApS, Farum, Denmark) for rapid and higher throughput antibiotic susceptibility testing (AST) of up to 96 bacteria–antibiotic combinations at a time. The imaging system consists of a digital camera, an illumination unit and a lens where the optical axis is tilted 6.25° relative to the horizontal plane of the stage. Such tilting grants more freedom of operation at both high and low concentrations of microorganisms. When considering a bacterial suspension in a microwell, the oCelloScope acquires a sequence of 6.25°-tilted images to form an image Z-stack. The stack contains the best-focus image, as well as the adjacent out-of-focus images (which contain progressively more out-of-focus bacteria, the further the distance from the best-focus position). The acquisition process is repeated over time, so that the time-lapse sequence of best-focus images is used to generate a video. The setting of the experiment, image analysis and generation of time-lapse videos can be performed through a dedicated software (UniExplorer, BioSense Solutions ApS). The acquired images can be processed for online and offline quantification of several morphological parameters, microbial growth, and inhibition over time.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins SG, Schuetz AN (2012) Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin Proc 87:290–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ge B, Wang F, Sjölund-Karlsson M et al (2013) Antimicrobial resistance in Campylobacter: susceptibility testing methods and resistance trends. J Microbiol Methods 95:57–67

    Article  CAS  PubMed  Google Scholar 

  4. Berghaus LJ, Giguère S, Guldbech K et al (2015) Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi. J Clin Microbiol 53:314–318

    Article  CAS  PubMed  Google Scholar 

  5. Baker CN, Stocker SA, Culver DH et al (1991) Comparison of the E test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria. J Clin Microbiol 29:533–538

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dortet L, Poirel L, Nordmann P (2015) Rapid detection of ESBL-producing enterobacteriaceae in blood cultures. Emerg Infect Dis 21:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Belkum A, Dunne WM (2013) Next-generation antimicrobial susceptibility testing. J Clin Microbiol 51:2018–2024

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmed MAS, Bansal D, Acharya A et al (2016) Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrob Resist Infect Control 11:1–6

    CAS  Google Scholar 

  9. Mohan R, Mukherjee A, Sevgen SE et al (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125

    Article  CAS  PubMed  Google Scholar 

  10. Liu T, Lu Y, Gau V et al (2014) Rapid antimicrobial susceptibility testing with electrokinetics enhanced biosensors for diagnosis of acute bacterial infections. Ann Biomed Eng 42:2314–2321

    Article  PubMed  PubMed Central  Google Scholar 

  11. Celandroni F, Salvetti S, Gueye SA et al (2016) Identification and pathogenic potential of clinical bacillus and paenibacillus isolates. PLoS One 11:0152831

    Article  Google Scholar 

  12. Waldeisen JR, Wang T, Mitra D et al (2011) A real-time PCR antibiogram for drug-resistant sepsis. PLoS One 6:e28528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  14. Doern GV (2011) Antimicrobial susceptibility testing. J Clin Microbiol 49:S4

    Article  PubMed Central  Google Scholar 

  15. Turnidge J, Paterson DL (2007) Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20:391–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Depalma G, Turnidge J, Craig BA (2016) Determination of disk diffusion susceptibility testing interpretive criteria using model-based analysis: development and implementation. Diagn Microbiol Infect Dis. https://doi.org/10.1016/j.diagmicrobio.2016.03.004

  17. Fredborg M, Rosenvinge FS, Spillum E et al (2015) Rapid antimicrobial susceptibility testing of clinical isolates by digital time-lapse microscopy. Eur J Clin Microbiol Infect Dis 34:2385–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fredborg M, Rosenvinge FS, Spillum E et al (2015) Automated image analysis for quantification of filamentous bacteria. BMC Microbiol 15:1–8

    Article  Google Scholar 

  19. Fredborg M, Andersen KR, Jorgensen E et al (2013) Real-time optical antimicrobial susceptibility testing. J Clin Microbiol 51:2047–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aunsbjerg SD, Andersen KR, Knøchel S (2015) Real-time monitoring of fungal inhibition and morphological changes. J Microbiol Methods 119:196–202

    Article  CAS  PubMed  Google Scholar 

  21. Kjeldsen T, Sommer M, Olsen JE (2015) Extended spectrum β-lactamase-producing Escherichia coli forms filaments as an initial response to cefotaxime treatment. BMC Microbiol 15:1–6

    Article  CAS  Google Scholar 

  22. Jelsbak L, Mortensen MIB, Kilstrup M et al (2016) The in vitro redundant enzymes PurN and PurT are both essential for systemic infection of mice in Salmonella enterica serovar Typhimurium. Infect Immun 84:2076–2085

    Article  PubMed  PubMed Central  Google Scholar 

  23. Khan DD, Lagerbäck P, Cao S et al (2015) A mechanism-based pharmacokinetic/pharmacodynamic model allows prediction of antibiotic killing from MIC values for WT and mutants. J Antimicrob Chemother 70:3051–3060

    Article  CAS  PubMed  Google Scholar 

  24. Uggerhøj LE, Poulsen TJ, Munk JK et al (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. Chembiochem 16:242–253

    Article  PubMed  Google Scholar 

  25. Yao Z, Kahne D, Kishony R (2012) Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell 48:705–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Periti P, Nicoletti P (1999) Classification of betalactam antibiotics according to their pharmacodynamics. J Chemother 11:323–330

    Article  CAS  PubMed  Google Scholar 

  27. Greenwood D, O’Grady F (1973) Comparison of the responses of Escherichia coli and Proteus mirabilis to seven β-lactam antibiotics. J Infect Dis 128:211–222

    Article  CAS  PubMed  Google Scholar 

  28. Goldman E, Green LH (2015) Practical handbook of microbiology. CRC Press, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Canali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Canali, C., Spillum, E., Valvik, M., Agersnap, N., Olesen, T. (2018). Real-Time Digital Bright Field Technology for Rapid Antibiotic Susceptibility Testing. In: Gillespie, S. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 1736. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7638-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7638-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7636-2

  • Online ISBN: 978-1-4939-7638-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics