Skip to main content

Comparative Methods for Reconstructing Ancient Genome Organization

  • Protocol
  • First Online:
Book cover Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1704))

Abstract

Comparative genomics considers the detection of similarities and differences between extant genomes, and, based on more or less formalized hypotheses regarding the involved evolutionary processes, inferring ancestral states explaining the similarities and an evolutionary history explaining the differences. In this chapter, we focus on the reconstruction of the organization of ancient genomes into chromosomes. We review different methodological approaches and software, applied to a wide range of datasets from different kingdoms of life and at different evolutionary depths. We discuss relations with genome assembly, and potential approaches to validate computational predictions on ancient genomes that are almost always only accessible through these predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    see the GOLD database for example https://gold.jgi.doe.gov/statistics .

References

  1. Sturtevant AH (1921) A case of rearrangement of genes in drosophila. Proc Natl Acad Sci U S A 7:235–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dobzhansky T, Sturtevant AH (1938) Inversions in the chromosomes of drosophila pseudoobscura. Genetics 23:28–64

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pauling L, Zuckerkandl E (1963) Chemical paleogenetics. Acta Chem Scand 17:S9–S16

    Article  CAS  Google Scholar 

  4. Poinar HN, Schwarz C, Qi J et al (2006) Metagenomics to paleogenomics: large–scale sequencing of mammoth DNA. Science 311:392–394

    Article  CAS  PubMed  Google Scholar 

  5. Muffato M, Roest Crollius H (2008) Paleogenomics in vertebrates, or the recovery of lost genomes from the mist of time. Bioessays 30:122–134

    Article  PubMed  Google Scholar 

  6. Ma J, Zhang L, Suh BB et al (2006) Reconstructing contiguous regions of an ancestral genome. Genome Res 16:1557–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chauve C, Tannier E (2008) A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLoS Comput Biol 4:e1000234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Neafsey DE, Waterhouse RM, Abai MR et al (2015) Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 anopheles mosquitoes. Science 347:1258522

    Article  PubMed  CAS  Google Scholar 

  9. Semeria M, Tannier E, Guéguen L (2015) Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies. BMC Bioinformatics 16(Suppl 14):S5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chauve C, Gavranovic H, Ouangraoua A et al (2010) Yeast ancestral genome reconstructions: the possibilities of computational methods II. J Comput Biol 17:1097–1112

    Article  CAS  PubMed  Google Scholar 

  11. Sankoff D, Zheng C, Wall PK et al (2009) Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. J Comput Biol 16:1353–1367

    Article  CAS  PubMed  Google Scholar 

  12. Murat F, Xu JH, Tannier E et al (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ming R, VanBuren R, Wai CM et al (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salse J (2016) Ancestors of modern plant crops. Curr Opin Plant Biol 30:134–142

    Article  PubMed  Google Scholar 

  15. Murat F, Louis A, Maumus F et al (2015) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 16:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Murat F, Zhang R, Guizard S et al (2015) Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops. Genome Biol Evol 7:735–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Li W, Zhang T et al (2006) Reconstruction of ancient genome and gene order from complete microbial genome sequences. J Theor Biol 239:494–498

    Article  CAS  PubMed  Google Scholar 

  18. Patterson M, Szöllősi G, Daubin V et al (2013) Lateral gene transfer, rearrangement, reconciliation. BMC Bioinformatics 14(Suppl 15):S4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Darling AE, Miklós I, Ragan MA (2008) Dynamics of genome rearrangement in bacterial populations. PLoS Genet 4:e1000128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kohn M, Högel J, Vogel W et al (2006) Reconstruction of a 450–my–old ancestral vertebrate protokaryotype. Trends Genet 22:203–210

    Article  CAS  PubMed  Google Scholar 

  21. Nakatani Y, Takeda H, Kohara Y et al (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ouangraoua A, Tannier E, Chauve C (2011) Reconstructing the architecture of the ancestral amniote genome. Bioinformatics 27:2664–2671

    Article  CAS  PubMed  Google Scholar 

  23. Jaillon O, Aury JM, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto–karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  24. Woods IG, Wilson C, Friedlander B et al (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Catchen JM, Conery JS, Postlethwait JH (2008) Inferring ancestral gene order. Methods Mol Biol 452:365–383

    Article  CAS  PubMed  Google Scholar 

  26. Naruse K, Tanaka M, Mita K et al (2004) A medaka gene map: the trace of ancestral vertebrate proto–chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Putnam NH, Butts T, Ferrier DEK et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  CAS  PubMed  Google Scholar 

  28. Putnam NH, Srivastava M, Hellsten U et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  PubMed  Google Scholar 

  29. Herrero J, Muffato M, Beal K et al (2016) Ensembl comparative genomics resources. Database 2016:bav096. https://doi.org/10.1093/database/bav096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Speir ML, Zweig AS, Rosenbloom KR et al (2016) The UCSC genome browser database: 2016 update. Nucleic Acids Res 44:D717–D725

    Article  CAS  PubMed  Google Scholar 

  31. Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14:157–167

    Article  CAS  PubMed  Google Scholar 

  32. Penel S, Arigon AM, Dufayard JF, Sertier AS, Daubin V, Duret L, Gouy M, Perrière G (2009) Databases of homologous gene families for comparative genomics. BMC Bioinformatics 10(Suppl 6):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sankoff D, Nadeau JH (2003) Chromosome rearrangements in evolution: from gene order to genome sequence and back. Proc Natl Acad Sci U S A 100:11188–11189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Višnovská, T. Vinar, and B. Brejová (2013) DNA sequence segmentation based on local similarity. In: ITAT 2013 Proceedings, pp. 36–43

    Google Scholar 

  35. Dousse A, Junier T, Zdobnov EM (2016) CEGA–a catalog of conserved elements from genomic alignments. Nucleic Acids Res 44:D96–D100

    Article  CAS  PubMed  Google Scholar 

  36. M. Belcaid, A. Bergeron, A. Chateau, et al. (2007) Exploring genome rearrangements using virtual hybridization. In: APBC’07: 5th Asia–Pacific bioinformatics conference, Imperial College Press 2007, pp. 205–214

    Google Scholar 

  37. Kim J, Larkin DM, Cai Q et al (2013) Reference–assisted chromosome assembly. Proc Natl Acad Sci U S A 110:1785–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biller P, Gueguen L, Knibbe C, Tannier E (2016) Breaking good: accounting for the fragility of genomic regions in rearrangement distance estimation. Genome Biol Evol 8(5):1427–1439

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alizadeh F, Karp RM, Weisser DK et al (1995) Physical mapping of chromosomes using unique probes. J Comput Biol 2:159–184

    Article  CAS  PubMed  Google Scholar 

  40. Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21:3340–3346

    Article  CAS  PubMed  Google Scholar 

  41. Fertin G (2009) Combinatorics of genome rearrangements. MIT Press, Cambridge

    Book  Google Scholar 

  42. Tannier E, Zheng C, Sankoff D (2009) Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Xu AW, Moret BME (2011) GASTS: parsimony scoring under rearrangements. In: Algorithms in bioinformatics. Springer, Berlin Heidelberg, pp 351–363

    Chapter  Google Scholar 

  44. Zheng C, Sankoff D (2011) On the PATHGROUPS approach to rapid small phylogeny. BMC Bioinformatics 12(Suppl 1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alekseyev MA, Pevzner PA (2009) Breakpoint graphs and ancestral genome reconstructions. Genome Res 19:943–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Avdeyev P, Jiang S, Aganezov S et al (2016) Reconstruction of ancestral genomes in presence of gene gain and loss. J Comput Biol 23:150–164

    Article  CAS  PubMed  Google Scholar 

  47. Ma J, Ratan A, Raney BJ et al (2008) The infinite sites model of genome evolution. Proc Natl Acad Sci U S A 105:14254–14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paten B, Zerbino DR, Hickey G et al (2014) A unifying model of genome evolution under parsimony. BMC Bioinformatics 15:206

    Article  PubMed  PubMed Central  Google Scholar 

  49. D. Simon and B. Larget (2004) Bayesian analysis to describe genomic evolution by rearrangement (BADGER), version 1.02 beta, Department of Mathematics and Computer Science, Duquesne University

    Google Scholar 

  50. Feijao P, Meidanis J (2011) SCJ: a breakpoint–like distance that simplifies several rearrangement problems. IEEE/ACM Trans Comput Biol Bioinform 8:1318–1329

    Article  PubMed  Google Scholar 

  51. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  52. Miklós I, Smith H (2015) Sampling and counting genome rearrangement scenarios. BMC Bioinformatics 16(Suppl 14):S6

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jones BR, Rajaraman A, Tannier E et al (2012) ANGES: reconstructing ANcestral GEnomeS maps. Bioinformatics 28:2388–2390

    Article  CAS  PubMed  Google Scholar 

  54. Hu F, Zhou J, Zhou L et al (2014) Probabilistic reconstruction of ancestral gene orders with insertions and deletions. IEEE/ACM Trans Comput Biol Bioinform 11:667–672

    Article  PubMed  Google Scholar 

  55. J. Ma (2010) A probabilistic framework for inferring ancestral genomic orders. In: Bioinformatics and biomedicine (BIBM), pp. 179–184

    Google Scholar 

  56. Maňuch J, Patterson M, Wittler R et al (2012) Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13(Suppl 19):S11

    PubMed  PubMed Central  Google Scholar 

  57. Stoye J, Wittler R (2009) A unified approach for reconstructing ancient gene clusters. IEEE/ACM Trans Comput Biol Bioinform 6:387–400

    Article  PubMed  Google Scholar 

  58. Maňuch J, Patterson M, Chauve C (2012) Hardness results on the gapped consecutive–ones property problem. Discrete Appl Math 160:2760–2768

    Article  Google Scholar 

  59. Maňuch J, Patterson M (2011) The complexity of the gapped consecutive–ones property problem for matrices of bounded maximum degree. J Comput Biol 18:1243–1253

    Article  PubMed  CAS  Google Scholar 

  60. Gavranović H, Chauve C, Salse J et al (2011) Mapping ancestral genomes with massive gene loss: a matrix sandwich problem. Bioinformatics 27:i257–i265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Csurös M (2010) Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26:1910–1912

    Article  PubMed  CAS  Google Scholar 

  62. De Bie T, Cristianini N, Demuth JP et al (2006) CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269–1271

    Article  PubMed  CAS  Google Scholar 

  63. Csűrös M (2013) How to infer ancestral genome features by parsimony: dynamic programming over an evolutionary tree. In: Models and algorithms for genome evolution. Springer, London, pp 29–45

    Chapter  Google Scholar 

  64. Sankoff D, Rousseau P (1975) Locating the vertices of a steiner tree in an arbitrary metric space. Math Prog 9:240–246

    Article  Google Scholar 

  65. Bergeron A, Chauve C, Gingras Y (2008) Formal models of gene clusters. In: Bioinformatics algorithms. John Wiley & Sons, Inc, Hoboken, pp 175–202

    Google Scholar 

  66. Wittler R, Maňuch J, Patterson M et al (2011) Consistency of sequence–based gene clusters. J Comput Biol 18:1023–1039

    Article  CAS  PubMed  Google Scholar 

  67. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next–generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    CAS  Google Scholar 

  68. Rajaraman A, Zanetti J, Manuch J et al (2016) Algorithms and complexity results for genome mapping problems. IEEE/ACM Trans Comput Biol Bioinform 14(2):418–430. https://doi.org/10.1109/TCBB.2016.2528239

    Article  PubMed  Google Scholar 

  69. Rajaraman A, Tannier E, Chauve C (2013) FPSAC: fast phylogenetic scaffolding of ancient contigs. Bioinformatics 29:2987–2994

    Article  CAS  PubMed  Google Scholar 

  70. Gagnon Y, Blanchette M, El Mabrouk N (2012) A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinformatics 13(Suppl 19):S4

    PubMed  PubMed Central  Google Scholar 

  71. Nakhleh L (2013) Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol Evol 28:719–728

    Article  PubMed  Google Scholar 

  72. Szöllősi GJ, Tannier E, Daubin V et al (2015) The inference of gene trees with species trees. Syst Biol 64:42–62

    Article  Google Scholar 

  73. Jacox E, Chauve C, Szöllősi GJ et al (2016) ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 32(13):2056–2058. https://doi.org/10.1093/bioinformatics/btw105

    Article  CAS  PubMed  Google Scholar 

  74. Luhmann N, Thévenin A, Ouangraoua A et al (2016) The SCJ small parsimony problem for weighted gene adjacencies. In: Bioinformatics research and applications. Springer, Berlin Heidelberg

    Google Scholar 

  75. Ma J, Ratan A, Raney BJ et al (2008) DUPCAR: reconstructing contiguous ancestral regions with duplications. J Comput Biol 15:1007–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bérard S, Gallien C, Boussau B et al (2012) Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28:i382–i388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chauve C, Ponty Y, Zanetti J (2015) Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach. BMC Bioinformatics 16(Suppl 19):S6

    Article  PubMed  PubMed Central  Google Scholar 

  78. Anselmetti Y, Berry V, Chauve C et al (2015) Ancestral gene synteny reconstruction improves extant species scaffolding. BMC Genomics 16(Suppl 10):S11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Duchemin W, Anselmetti Y, Patterson M et al (2017) DeCoSTAR: reconstructing the ancestral organization of genes or genomes using reconciled phylogenies. Genome Biol Evol 9:1312–1319

    Article  PubMed  PubMed Central  Google Scholar 

  80. Koren S, Schatz MC, Walenz BP et al (2012) Hybrid error correction and de novo assembly of single–molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Antipov D, Korobeynikov A, McLean JS et al (2015) hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Paulino D, Warren RL, Vandervalk BP et al (2015) Sealer: a scalable gap–closing application for finishing draft genomes. BMC Bioinformatics 16:230

    Article  PubMed  PubMed Central  Google Scholar 

  83. Salmela L, Sahlin K, Mäkinen V et al (2016) Gap filling as exact path length problem. J Comput Biol 23:347–361

    Article  CAS  PubMed  Google Scholar 

  84. English AC, Richards S, Han Y et al (2012) Mind the gap: upgrading genomes with Pacific biosciences RS long read sequencing technology. PLoS One 7:e47768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long–read sequencing and assembly. Curr Opin Microbiol 23:110–120

    Article  CAS  PubMed  Google Scholar 

  86. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lin Y, Nurk S, Pevzner PA (2014) What is the difference between the breakpoint graph and the de Bruijn graph? BMC Genomics 15(Suppl 6):S6

    Article  Google Scholar 

  88. Compeau PEC, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 29:987–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muñoz A, Zheng C, Zhu Q et al (2010) Scaffold filling, contig fusion and comparative gene order inference. BMC Bioinformatics 11:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Aganezov S, Sitdykova N, AGC Consortium et al (2015) Scaffold assembly based on genome rearrangement analysis. Comput Biol Chem 57:46–53

    Article  CAS  PubMed  Google Scholar 

  91. Higuchi R, Bowman B, Freiberger M et al (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284

    Article  CAS  PubMed  Google Scholar 

  92. Cooper A, Lalueza-Fox C, Anderson S et al (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707

    Article  CAS  PubMed  Google Scholar 

  93. Stiller M, Baryshnikov G, Bocherens H et al (2010) Withering away–25,000 years of genetic decline preceded cave bear extinction. Mol Biol Evol 27:975–978

    Article  CAS  PubMed  Google Scholar 

  94. Krings M, Stone A, Schmitz RW et al (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  CAS  PubMed  Google Scholar 

  95. Marciniak S, Klunk J, Devault A et al (2015) Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J Hum Evol 79:21–34

    Article  PubMed  Google Scholar 

  96. Rasmussen S, Allentoft ME, Nielsen K et al (2015) Early divergent strains of Yersinia Pestis in Eurasia 5,000 years ago. Cell 163:571–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wagner DM, Klunk J, Harbeck M et al (2014) Yersinia Pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis 14:319–326

    Article  PubMed  Google Scholar 

  98. Miller W, Drautz DI, Ratan A et al (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387–390

    Article  CAS  PubMed  Google Scholar 

  99. Orlando L, Ginolhac A, Zhang G et al (2013) Recalibrating Equus evolution using the genome sequence of an early middle pleistocene horse. Nature 499:74–78

    Article  CAS  PubMed  Google Scholar 

  100. Peltzer A, Jäger G, Herbig A et al (2016) EAGER: efficient ancient genome reconstruction. Genome Biol 17:1–14

    Article  CAS  Google Scholar 

  101. Minkin I, Patel A, Kolmogorov M et al (2013) Sibelia: a scalable and comprehensive synteny block generation tool for closely related microbial genomes. In: Algorithms in bioinformatics. Springer, Berlin Heidelberg, pp 215–229

    Chapter  Google Scholar 

  102. Bos KI, Schuenemann VJ, Golding GB et al (2011) A draft genome of Yersinia Pestis from victims of the black death. Nature 478:506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Froenicke L, Caldés MG, Graphodatsky A et al (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16:306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Steel M, Penny D (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol 17:839–850

    Article  CAS  PubMed  Google Scholar 

  105. Durrett R, Nielsen R, York TL (2004) Bayesian estimation of genomic distance. Genetics 166:621–629

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gould SJ (1990) Wonderful life: the burgess shale and the nature of history. Norton, New York

    Google Scholar 

  107. Hillis DM, Bull JJ, White ME et al (1992) Experimental phylogenetics: generation of a known phylogeny. Science 255:589–592

    Article  CAS  PubMed  Google Scholar 

  108. R.N. Randall (2012) Experimental phylogenetics: a benchmark for ancestral sequence reconstruction. https://smartech.gatech.edu/handle/1853/48998

  109. Barrick JE, Yu DS, Yoon SH et al (2009) Genome evolution and adaptation in a long–term experiment with Escherichia Coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  110. Romiguier J, Ranwez V, Douzery EJP et al (2013) Genomic evidence for large, long–lived ancestors to placental mammals. Mol Biol Evol 30:5–13

    Article  CAS  PubMed  Google Scholar 

  111. Szöllosi GJ, Boussau B, Abby SS et al (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci U S A 109:17513–17518

    Article  PubMed  PubMed Central  Google Scholar 

  112. Beiko RG, Charlebois RL (2007) A simulation test bed for hypotheses of genome evolution. Bioinformatics 23:825–831

    Article  CAS  PubMed  Google Scholar 

  113. Dalquen DA, Anisimova M, Gonnet GH et al (2012) ALF–a simulation framework for genome evolution. Mol Biol Evol 29:1115–1123

    Article  CAS  PubMed  Google Scholar 

  114. Biller P, Knibbe C, Beslon G, Tannier E (2016) Comparative genomics on artificial life. In: Computability in Europe, to appear. Springer, Cham

    Google Scholar 

Download references

Acknowledgment

C.C. is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 249834. E.T., S.B., and Y.A. are funded by the French Agence Nationale pour la Recherche (ANR) through PIA Grant ANR-10-BINF-01-01 “Ancestrome”. N.L. is funded by the International DFG Research Training Group GRK 1906/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Chauve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anselmetti, Y., Luhmann, N., Bérard, S., Tannier, E., Chauve, C. (2018). Comparative Methods for Reconstructing Ancient Genome Organization. In: Setubal, J., Stoye, J., Stadler, P. (eds) Comparative Genomics. Methods in Molecular Biology, vol 1704. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7463-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7463-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7461-0

  • Online ISBN: 978-1-4939-7463-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics