Skip to main content

Investigating Cellular Quiescence of T Lymphocytes and Antigen-Induced Exit from Quiescence

  • Protocol
  • First Online:
Book cover Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Naïve T cells are in a quiescent state under homeostasis but respond to antigen stimulation by exiting from quiescence and entering the cell cycle. Appropriate regulation of quiescence is crucial for maintaining T cell homeostasis at steady state and initiating proper T cell responses to antigen stimulation. Emerging evidence indicates that signaling by mechanistic target of rapamycin (mTOR) plays a central role in the control of T cell quiescence and antigen-induced exit from quiescence through coordinating immune signals, cellular metabolic programs, and cell cycle machinery. The mTOR-dependent regulation of quiescence has also been implicated in the differentiation and function of memory T cells. In this chapter, we describe techniques to assess quiescent state of naïve T cells under steady state and exit from quiescence upon TCR stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9(12):823–832. doi:10.1038/nri2657

    Article  CAS  PubMed  Google Scholar 

  2. Yang K, Chi H (2012) mTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol 24(6):421–428. doi:10.1016/j.smim.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Hamilton SE, Jameson SC (2012) CD8 T cell quiescence revisited. Trends Immunol 33(5):224–230. doi:10.1016/j.it.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283. doi:10.1146/annurev-immunol-032712-095956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38(2):225–236. doi:10.1016/j.immuni.2012.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buck MD, O'Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212(9):1345–1360. doi:10.1084/jem.20151159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang K, Neale G, Green DR, He W, Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12(9):888–897. doi:10.1038/ni.2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu Q, Liu Y, Chen C, Ikenoue T, Qiao Y, Li CS, Li W, Guan KL, Liu Y, Zheng P (2011) The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J Immunol 187(3):1106–1112. doi:10.4049/jimmunol.1003968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P, Guertin DA, Lamb RF, Chi H (2013) T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity 39(6):1043–1056. doi:10.1016/j.immuni.2013.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, Marbois BN, Komisopoulou E, Wilson EB, Osborne TF, Graeber TG, Reue K, Brooks DG, Bensinger SJ (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14(5):489–499. doi:10.1038/ni.2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12(5):325–338. doi:10.1038/nri3198

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485–490. doi:10.1038/nature12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4):295–303. doi:10.1038/ni.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee K, Nam KT, Cho SH, Gudapati P, Hwang Y, Park DS, Potter R, Chen J, Volanakis E, Boothby M (2012) Vital roles of mTOR complex 2 in notch-driven thymocyte differentiation and leukemia. J Exp Med 209(4):713–728. doi:10.1084/jem.20111470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng H, Cohen S, Guy C, Shrestha S, Neale G, Brown SA, Cloer C, Kishton RJ, Gao X, Youngblood B, Do M, Li MO, Locasale JW, Rathmell JC, Chi H (2016) mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45(3):540–554. doi:10.1016/j.immuni.2016.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y, Yamada T, Egami S, Hoshii T, Hirao A, Matsuda S, Koyasu S (2012) PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep 1(4):360–373. doi:10.1016/j.celrep.2012.02.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge H. Zeng and Y. Wang for scientific inputs and editing. This work was supported by NIH AI105887, AI101407, CA176624 and NS064599, and American Asthma Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yang, K., Chi, H. (2018). Investigating Cellular Quiescence of T Lymphocytes and Antigen-Induced Exit from Quiescence. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics