Skip to main content

Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1645))

Abstract

Mycobacterium neoaurum is a saprophytic, soil-dwelling bacterium. The strain NRRL B-3805 converts phytosterols to androst-4-ene-3,17-dione (androstenedione; AD), a precursor of multiple C19 steroids of importance to industry. NRRL B-3805 itself is able to convert AD to other steroid products, including testosterone (Ts) and androst-1,4-diene-3,17-dione (androstadienedione; ADD). However to improve this strain for industrial use, genetic modification is a priority. In this chapter, we describe a range of genetic techniques that can be used for M. neoaurum NRRL B-3805. Methods for transformation, expression, and gene knockouts are presented as well as plasmid maintenance and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatti HN, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77(12):1267–1290

    Article  CAS  PubMed  Google Scholar 

  2. Wei W et al (2010) Inactivation and augmentation of the primary 3-ketosteroid-{delta}1-dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microbiol 76(13):4578–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perez C et al (2006) A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J Ind Microbiol Biotechnol 33(8):719–723

    Article  CAS  PubMed  Google Scholar 

  4. Van der Geize R et al (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104(6):1947–1952

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shao M et al (2015) Enhanced production of androst-1,4-diene-3,17-dione by mycobacterium neoaurum JC-12 using three-stage fermentation strategy. PLoS One 10(9):e0137658

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fernandes P et al (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Technol 32(6):688–705

    Article  CAS  Google Scholar 

  7. Bergstrand LH et al (2016) Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio 7(2):e00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23(1):72–77

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodríguez-García A et al (2016) Complete genome sequence of ‘Mycobacterium neoaurum’ NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65

    Article  PubMed  Google Scholar 

  10. Bragin EY et al (2013) Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 138:41–53

    Article  CAS  PubMed  Google Scholar 

  11. Marques MPC et al (2010) Steroid bioconversion: towards green processes. Food Bioprod Process 88(C1):12–20

    Article  CAS  Google Scholar 

  12. Llanes N et al (1995) Glucose and lactose effect on ad and add bioconversion by Mycobacterium Sp. Biotechnol Lett 17(11):1237–1240

    Article  CAS  Google Scholar 

  13. Liu WH, Lo CK (1997) Production of testosterone from cholesterol using a single-step microbial transformation of Mycobacterium sp. J Ind Microbiol Biotechnol 19(4):269–272

    Article  CAS  PubMed  Google Scholar 

  14. Parish T et al (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143:2267–2276

    Article  CAS  PubMed  Google Scholar 

  15. Brown AC, Parish T (2006) Instability of the acetamide-inducible expression vector pJAM2 in Mycobacterium tuberculosis. Plasmid 55(1):81–86

    Article  CAS  PubMed  Google Scholar 

  16. Pandey AK et al (2009) Nitrile-inducible gene expression in mycobacteria. Tuberculosis 89(1):12–16

    Article  CAS  PubMed  Google Scholar 

  17. Carroll P, Muttucumaru DGN, Parish T (2005) Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Environ Microbiol 71(6):3077–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sassetti CM (2008) Inducible expression systems for mycobacteria. In: Parish T, Brown AC (eds) Mycobacteria protocols. Humana Press, New York, pp 255–264

    Google Scholar 

  19. Rudolph MM, Vockenhuber MP, Suess B (2013) Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 159:1416–1422

    Article  CAS  PubMed  Google Scholar 

  20. Suess B et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32(4):1610–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67(5):1094–1107

    Article  PubMed  Google Scholar 

  22. Pelicic V, Reyrat JM, Gicquel B (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20(5):919–925

    Article  CAS  PubMed  Google Scholar 

  23. Carroll P et al (2010) Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 5(3):e9823

    Article  PubMed  PubMed Central  Google Scholar 

  24. Herrmann JL et al (1996) Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. EMBO J 15(14):3547–3554

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goude R, Parish T (2008) Electroporation of mycobacteria. In: Parish T, Brown AC (eds) Mycobacteria protocols. Humana Press, New York, pp 203–215

    Google Scholar 

  26. Belisle JT, Mahaffey SB, Hill PJ (2008) Isolation of Mycobacterium species genomic DNA. In: Parish T, Brown AC (eds) Mycobacteria protocols. Humana Press, New York, pp 1–12

    Google Scholar 

Download references

Acknowledgments

We are grateful to Beatrix Suess for donating the plasmid pGUS_ermE_E* and to the Biotechnology and Biological Sciences Research Council, UK, for funding (project BB/L003619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret C. M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Loraine, J.K., Smith, M.C.M. (2017). Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805. In: Barredo, JL., Herráiz, I. (eds) Microbial Steroids. Methods in Molecular Biology, vol 1645. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7183-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7183-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7182-4

  • Online ISBN: 978-1-4939-7183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics