Skip to main content

Carbohydrate Depolymerization by Intricate Cellulosomal Systems

  • Protocol
  • First Online:
Book cover Protein-Carbohydrate Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1588))

Abstract

Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein–protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmel ME, Xu Q, Luo Y et al (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341. doi:10.4155/bfs.09.25

    Article  CAS  Google Scholar 

  2. Lamed R, Setter E, Bayer EA (1983) The cellulosome: a discrete cell surface organelle of clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181

    CAS  Google Scholar 

  3. Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. doi:10.1146/annurev.micro.57.030502.091022

    Article  CAS  PubMed  Google Scholar 

  4. Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dassa B, Borovok I, Lamed R et al (2012) Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13:210. doi:10.1186/1471-2164-13-210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamberg Y, Ruimy-Israeli V, Dassa B et al (2014) Elaborate cellulosome architecture of acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions. Peer J 2:e636. doi:10.7717/peerj.636

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rincon MT, Dassa B, Flint HJ et al (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 5:e12476. doi:10.1371/journal.pone.0012476

    Article  PubMed  PubMed Central  Google Scholar 

  8. Izquierdo J a., Goodwin L, Davenport KW, et al (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 6:104–115. doi: 10.4056/sigs.2535732

  9. Artzi L, Dassa B, Borovok I et al (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100. doi:10.1186/1754-6834-7-100

    Article  PubMed  PubMed Central  Google Scholar 

  10. Artzi L, Morag E, Barak Y et al (2015) Clostridium clariflavum: key cellulosome players are revealed by proteomic analysis. MBio 6:1–12. doi:10.1128/mBio.00411-15

    Article  Google Scholar 

  11. Bayer EA, Morag E, Lamed R (1994) The cellulosome-a treasure-trove for biotechnology. Trends Biotechnol 12:379–386. doi:10.1016/0167-7799(94)90039-6

    Article  CAS  PubMed  Google Scholar 

  12. Pagès S, Bélaïch A, Bélaïch JP et al (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517–527

    Article  PubMed  Google Scholar 

  13. Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio 7:e00083. doi:10.1128/mBio.00083-16.

  14. Haimovitz R, Barak Y, Morag E et al (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979. doi:10.1002/pmic.200700486

    Article  CAS  PubMed  Google Scholar 

  15. Barak Y, Handelsman T, Nakar D et al (2005) Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J Mol Recognit 18:491–501. doi:10.1002/jmr.749

    Article  CAS  PubMed  Google Scholar 

  16. Shiratori H, Sasaya K, Ohiwa H et al (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose−/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770. doi:10.1099/ijs.0.003483-0

    Article  CAS  PubMed  Google Scholar 

  17. Bayer EA, Shoham Y, Lamed R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E, DeLong EF, Lory S et al (eds) Prokaryotes-prokaryotic physiol biochem. pp 215–265. Springer: Berlin

    Google Scholar 

  18. Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bayer EA, Lamed R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169:3792–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Q, Resch MG, Podkaminer K et al (2016) Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv 2:e1501254. doi:10.1126/sciadv.1501254

    PubMed  PubMed Central  Google Scholar 

  23. Raman B, Pan C, Hurst GB et al (2009) Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4:e5271

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morag E, Lapidot A, Govorko D et al (1995) Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fendri I, Tardif C, Fierobe H-P et al (2009) The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 276:3076–3086. doi:10.1111/j.1742-4658.2009.07025.x

    Article  CAS  PubMed  Google Scholar 

  26. Han SO, Yukawa H, Inui M, Doi RH (2005) Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151:1491–1497. doi:10.1099/mic.0.27605-0

    Article  CAS  PubMed  Google Scholar 

  27. Fierobe HP, Mechaly A, Tardif C et al (2001) Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276:21257–21261. doi:10.1074/jbc.M102082200

    Article  CAS  PubMed  Google Scholar 

  28. Caspi J, Irwin D, Lamed R et al (2006) Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal Biotransform 24:3–12

    Article  CAS  Google Scholar 

  29. Caspi J, Irwin D, Lamed R et al (2008) Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–357. doi:10.1016/j.jbiotec.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  30. Caspi J, Barak Y, Haimovitz R et al (2009) Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 75:7335–7342. doi:10.1128/AEM.01241-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caspi J, Barak Y, Haimovitz R et al (2010) Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 4:193–201. doi:10.1007/s11693-010-9056-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fierobe HP, Mingardon F, Mechaly A et al (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 280:16325–16334. doi:10.1074/jbc.M414449200

    Article  CAS  PubMed  Google Scholar 

  33. Moraïs S, Barak Y, Caspi J et al (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1:3–10. doi:10.1128/mBio.00285-10.

    Article  Google Scholar 

  34. Moraïs S, Morag E, Barak Y et al (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio. doi:10.1128/mBio.00508-12

    PubMed  PubMed Central  Google Scholar 

  35. Mingardon F, Chanal A, Tardif C et al (2007) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73:7138–7149. doi:10.1128/AEM.01306-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mingardon F, Chanal A, López-Contreras AM et al (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832. doi:10.1128/AEM.00398-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arfi Y, Shamshoum M, Rogachev I et al (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111:9109–9114. doi:10.1073/pnas.1404148111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eschbach S, Hofmann C, Maerz M, et al (1990) Molecular cloning. A laboratory manual. 2. Auflage. Hrsg. von J. Sambrook, E. F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press. ISBN 0-87969-309-6. Biol Unserer Zeit 20:285–285. doi: 10.1002/biuz.19900200607

  39. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. Proteomics Protoc Handb:571–607. doi:10.1385/1-59259-890-0:571

  40. Vazana Y, Moraïs S, Barak Y et al (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452. doi:10.1016/B978-0-12-415931-0.00023-9

    Article  CAS  PubMed  Google Scholar 

  41. Adams JJ, Webb BA, Spencer HL, Smith SP (2005) Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: Calcium-induced effects on conformation and target recognition. Biochemistry 44:2173–2182. doi: 10.1021/bi048039u

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Stern, J., Artzi, L., Moraïs, S., Fontes, C.M.G.A., Bayer, E.A. (2017). Carbohydrate Depolymerization by Intricate Cellulosomal Systems. In: Abbott, D., Lammerts van Bueren, A. (eds) Protein-Carbohydrate Interactions. Methods in Molecular Biology, vol 1588. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6899-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6899-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6898-5

  • Online ISBN: 978-1-4939-6899-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics