Skip to main content

Dietary Phytate and Interactions with Mineral Nutrients

  • Chapter
  • First Online:
Book cover Clinical Aspects of Natural and Added Phosphorus in Foods

Abstract

For decades phytate has been regarded as an antinutrient, as, during gastrointestinal passage, it may inhibit the absorption of some essential trace elements and minerals, which under certain dietary circumstances leads to calcium, iron and zinc deficiencies. In the last 25 years, however, important healthy beneficial properties of phytate have been observed (antioxidant, anticancer, renal stone prevention, etc.). In this chapter, the effects of phytate on mineral and trace element bioavailability are reported. From the available information it can be deduced that in balanced diets the inhibitory effects of phytate on mineral absorption are low, and little evidence exists from nutritional surveys that in well-nourished population groups,dietary phytate may really affect the status of iron, zinc and calcium. Under malnutrition and non-balanced diets, low in minerals and essential trace elements but high in phytate, however, the situation is different. Vulnerable groups in developing and developed countries, with inadequate intake or deficiencies of minerals and trace elements, need to increase total intake of these elements. This can be accomplishedvia the daily diet or improve their bioavailability, through modification of factors inhibiting or enhancing the bioavailability of the minerals and trace elements in the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartig T. Über das Klebermehl. Bot Z. 1855;13:881–2.

    Google Scholar 

  2. Hartig T. Weitere mitteilungen, das Klebermehl (Aleuron) betreffend. Bot Z. 1856;14:257–69.

    Google Scholar 

  3. Raboy V. Myo-Inositol-1,2,3,4,5,6-hexakisphosphates. Phytochemistry. 2003;64:1033–43.

    Article  CAS  PubMed  Google Scholar 

  4. Phillippy BQ, Bland JM, Evens TJ. Ion chromatography of phytate in roots and tubers. J Agric Food Chem. 2003;51:350–3.

    Article  CAS  Google Scholar 

  5. Schlemmer U, Frolich W, Prieto RM, Grases F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res. 2009;53:S330–75.

    Article  PubMed  Google Scholar 

  6. McCance RA, Widdowson EM. Mineral metabolism of healthy adults on white and brown bread dietaries. J Physiol. 1942;101:44–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCance RA, Walsham CM. The digestibility and absorption of the calories, proteins, purines, fat and calcium in wholemeal wheaten bread. Brit J Nutr. 1948;2:26–41.

    Article  CAS  PubMed  Google Scholar 

  8. Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat RM, Reinhold JG. Zinc deficiency in man: the Shiraz experiment. Am J Med. 1972;53:277–84.

    Article  CAS  PubMed  Google Scholar 

  9. Reinhold JG. Phytate concentrations of leavened and unleavened Iranian breads. Ecol Food Nutr. 1972;1:187–92.

    Article  Google Scholar 

  10. Graf E, Empson KL, Eaton JW. Phytic acid – a natural antioxidant. J Biol Chem. 1987;262:11647–50.

    CAS  PubMed  Google Scholar 

  11. Shamsuddin AM. Inositol phosphates have novel anticancer function. J Nutr. 1995;125:725S–32.

    CAS  PubMed  Google Scholar 

  12. Khatiwada J, Verghese M, Davis S, Williams LL. Green tea, phytic acid, and inositol in combination reduced the incidence of azoxymethane-induced colon tumors in Fisher 344 male rats. J Med Food. 2011;14:1313–20.

    Article  CAS  PubMed Central  Google Scholar 

  13. Verghese M, Rao DR, Chawan CB, Walker LT, Shackelford L. Anticarcinogenic effect of phytic acid (IP6): apoptosis as a possible mechanism of action. LWT. Food Sci Technol. 2006;39:1093–8.

    CAS  Google Scholar 

  14. Grases F, Costa-Bauzá A. Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: usefulness in renal lithiasis treatment. Anticancer Res. 1999;19:3717–22.

    CAS  PubMed  Google Scholar 

  15. Lee SH, Park HJ, Chung HK, Cho SY, Cho SM, Lillehoj HS. Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutr Res. 2006;26:474–9.

    Article  CAS  Google Scholar 

  16. Yoon JH, Thompson LU, Jenkins DJ. The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am J Clin Nutr. 1983;38:835–42.

    CAS  PubMed  Google Scholar 

  17. Lee SH, Park HJ, Chun HK, Cho SY, Jung HJ, Cho SM, Kim DY, Kang MS, Lillehoj HS. Dietary phytic acid improves serum and hepatic lipid levels in aged ICR mice fed a high-cholesterol diet. Nutr Res. 2007;27:505–10.

    Article  CAS  Google Scholar 

  18. Jariwalla RJ, Sabin R, Lawson S, Herman ZS. Lowering of serum cholesterol and triglycerides and modulation of divalent cations by dietary phytate. J Appl Nutr. 1990;42:18–28.

    Google Scholar 

  19. Reddy NR. Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK, editors. Food phytate. Boca Raton: CRC Press; 2002. p. 25–52.

    Google Scholar 

  20. Persson H, Nair BM, Frølich W, Nyman M, Asp NG. Binding of mineral elements by some dietary fiber components – In vitro (II). Food Chem. 1987;26:139–48.

    Article  CAS  Google Scholar 

  21. Persson H, Nyman M, Liljeberg H, Önning G, Frølich W. Binding of mineral elements by dietary fiber components in cereals – In vitro (III). Food Chem. 1991;40:169–83.

    Article  CAS  Google Scholar 

  22. Harland BF, Morris ER. Phytate – a good or a bad food component? Nutr Res. 1995;15:733–54.

    Article  CAS  Google Scholar 

  23. Weaver CM, Kannan S. Phytate and mineral bioavailability. In: Reddy NR, Sathe SK, editors. Food phytates. Boca Raton: CRC Press; 2002. p. 211–23.

    Google Scholar 

  24. Reddy NR, Pierson MD, Sathe SK, Salunkhe DK. Nutritional consequences of phytates. In: Reddy NR, editor. Phytates in cereals and legumes. Boca Raton: CRC Press; 1989. p. 81–102.

    Google Scholar 

  25. Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med. 1961;31:532–46.

    Article  CAS  PubMed  Google Scholar 

  26. Prasad AS, Miale A, Farid Z, Sandstead HH, Schulert AR, Darby WJ. Biochemical studies on dwarfism, hypogonadism, and anemia. Arch Intern Med. 1963;111:407–28.

    Article  CAS  PubMed  Google Scholar 

  27. Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007;370:511–20.

    Article  CAS  PubMed  Google Scholar 

  28. Yip R. Iron deficiency: contemporary scientific issues and international programmatic approaches. J Nutr. 1994;124:1479S–90.

    CAS  PubMed  Google Scholar 

  29. Brune M, Rossander L, Hallberg L. Iron absorption – no intestinal adaptation to a high-phytate diet. Am J Clin Nutr. 1989;49:542–5.

    CAS  PubMed  Google Scholar 

  30. Sandberg AS, Svanberg U. Phytate hydrolysis by phytase in cereals; effects on in vitro estimation of iron availability. J Food Sci. 1991;56:1330–3.

    Article  CAS  Google Scholar 

  31. Reddy MB, Hurrel RF, Juillerat MA, Cook JD. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am J Clin Nutr. 1996;63:203–7.

    CAS  PubMed  Google Scholar 

  32. Gillooly M, Bothwell TH, Torrance JD, MacPhail AP, Derman DP, Bezwoda WR, Mills W, Charlton RW, Mayet F. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Brit J Nutr. 1983;49:331–42.

    Article  CAS  PubMed  Google Scholar 

  33. Hallberg L, Brune M, Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J Clin Nutr. 1989;49:140–4.

    CAS  PubMed  Google Scholar 

  34. Layrisse M, García-Casal MN, Solano L, Barón MA, Arguello F, Llovera D, Ramírez J, Leets I, Tropper E. New property of vitamin A and beta-carotene on human iron absorption: effect on phytate and polyphenols as inhibitors of iron absorption. Arch Latinoam Nutr. 2000;50:243–8.

    CAS  PubMed  Google Scholar 

  35. Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, Car NG, MacPhail P, Schmidt U, Tal A, Mayet F. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr. 1991;53:537–41.

    CAS  PubMed  Google Scholar 

  36. Pabon M, Lönnerdal B. Distribution of iron and its bioavailability from iron-fortified milk and formula. Nutr Res. 1992;13:103–11.

    Article  Google Scholar 

  37. Sandström B, Almgren A, Kivistö B, Cederblad A. Effect of protein level and protein source on zinc absorption in humans. J Nutr. 1989;119:48–53.

    PubMed  Google Scholar 

  38. Flanagan PR. A model to produce pure zinc deficiency in rats and its use to demonstrate that dietary phytate increases the excretion of endogenous zinc. J Nutr. 1984;114:493–502.

    CAS  PubMed  Google Scholar 

  39. Weisstaub G, Medina M, Pizarro F, Araya M. Copper, iron, and zinc status in children with moderate and severe acute malnutrition recovered following WHO protocols. Biol Trace Elem Res. 2008;124:1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Graf E, Eaton JW. Effects of phytate on mineral bioavailability in mice. J Nutr. 1984;114:1192–8.

    CAS  PubMed  Google Scholar 

  41. Kelsay JL. Effects of fiber, phytic acid and oxalic acid in the diet on mineral bioavailability. Am J Gastroenterol. 1987;82:983–6.

    CAS  PubMed  Google Scholar 

  42. Davidsson L, Galan P, Cherouvrier F, Kastenmayer P, Juillerat MA, Hercberg S, Hurrell RF. Bioavailability in infants of iron from infant cereals: effect of dephytinization. Am J Clin Nutr. 1997;65:916–20.

    CAS  PubMed  Google Scholar 

  43. Sandström B, Bügel S, McGaw BA, Price J, Reid MD. A high oat-bran intake does not impair zinc absorption in humans when added to a low-fiber animal protein-based diet. J Nutr. 2000;130:594–9.

    PubMed  Google Scholar 

  44. Siqueira EM, Arruda SF, de Sousa LM, de Souza EM. Phytate from an alternative dietary supplement has no effect on the calcium, iron and zinc status in undernourished rats. Arch Latinoam Nutr. 2001;51:250–7.

    CAS  PubMed  Google Scholar 

  45. Grases F, Simonet BM, Prieto RM, March JG. Dietary phytate and mineral bioavalability. J Trace Elem Med Biol. 2001;15:221–8.

    Article  CAS  PubMed  Google Scholar 

  46. Grases F, Simonet BM, Perelló J, Costa-Bauzá A, Prieto RM. Effect of phytate on element bioavailability in the second generations of rats. J Trace Elem Med Biol. 2004;17:229–34.

    Article  CAS  PubMed  Google Scholar 

  47. Davies NT, Olpin SE. Studies on the phytate: zinc molar contents in diets as a determinant of Zn availability to young rats. Brit J Nutr. 1979;41:590–603.

    CAS  PubMed  Google Scholar 

  48. Forbes RM, Weingartner KE, Parker HM, Bell RR, Erdman JW. Bioavailability to rats of zinc, magnesium and calcium in casein-, egg- and soy protein-containing diets. J Nutr. 1979;109:1652–60.

    CAS  PubMed  Google Scholar 

  49. Forbes RM, Parker HM, Erdman JW. Effects of dietary phytate, calcium and magnesium levels on zinc bioavailability to rats. J Nutr. 1984;114:1421–5.

    CAS  PubMed  Google Scholar 

  50. Lönnerdal B, Cederblad A, Davidsson L, Sandström B. The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am J Clin Nutr. 1984;40:1064–70.

    PubMed  Google Scholar 

  51. Khokhar S, Pushpanjali, Fenwick GR. Phytate content of Indian foods and intakes by vegetarian Indians of Hisar region, Haryana State. J Agric Food Chem. 1994;42:2440–4.

    Article  CAS  Google Scholar 

  52. Zhou JR, Fordyce EJ, Raboy V, Dickinson DB, Wong MS, Burns RA, Erdman JW. Reduction of phytic acid in soybean products improves zinc bioavailability in rats. J Nutr. 1992;122:2466–73.

    CAS  PubMed  Google Scholar 

  53. Hurrell RF, Juillerat MA, Reddy MB, Lynch SR, Dassenko SA, Cook JD. Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr. 1992;56:573–8.

    CAS  PubMed  Google Scholar 

  54. Manary MJ, Hotz C, Krebs NF, Gibson RS, Westcott JE, Arnold T, Broadhead RL, Hambidge KM. Dietary phytate reduction improves zinc absorption in Malawian children recovering from tuberculosis but not in well children. J Nutr. 2000;130:2959–64.

    CAS  PubMed  Google Scholar 

  55. Pallauf J, Pippig S, Most E, Rimbach G. Supplemental sodium phytate and microbial phytase influence iron availability in growing rats. J Trace Elem Med Biol. 1999;13:134–40.

    Article  CAS  PubMed  Google Scholar 

  56. Walker AR, Fox FW, Irving JT. Studies in human mineral metabolism. The effect of bread rich in phytate phosphorus on the metabolism of certain mineral salts with special reference to calcium. Biochem J. 1948;42:452–62.

    Article  CAS  PubMed Central  Google Scholar 

  57. Cullumbine H, Basnayake V, Lemottee J, Wickramanayake TW. Mineral metabolism on rice diets. Brit J Nutr. 1950;4:101–11.

    Article  CAS  PubMed  Google Scholar 

  58. Hotz C, Gibson RS. Complementary feeding practices and dietary intakes from complementary foods amongst weanlings in rural Malawi. Eur J Clin Nutr. 2001;55:841–9.

    Article  CAS  PubMed  Google Scholar 

  59. Grases F, Simonet BM, March JG, Prieto RM. Inositol hexakisphosphate in urine: the relationship between oral intake and urinary excretion. BJU Int. 2000;85:138–42.

    Article  CAS  PubMed  Google Scholar 

  60. Hunter JE. Iron availability and absorption in rats fed sodium phytate. J Nutr. 1981;111:841–7.

    CAS  PubMed  Google Scholar 

  61. Lott JNA, Ockenden I. The fine structure of phytate-rich particles in plants. In: Graf E, editor. Phytic acid: chemistry and applications. Minneapolis: Pilatus Press; 1986. p. 43–55.

    Google Scholar 

  62. Lott JNA, Buttrose MS. Globoids in protein bodies of legume seed cotyledons. Aust J Plant Physiol. 1978;5:89–111.

    Article  CAS  Google Scholar 

  63. Maga JA. Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J Agric Food Chem. 1982;30:1–9.

    Article  CAS  Google Scholar 

  64. Grases F, Perelló J, Simonet BM, Prieto RM, Garcia-Raja A. Study of potassium phytate effects on decreasing urinary calcium in rats. Urol Int. 2004;72:237–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Dirección General de Investigación from the Ministerio de Ciencia e Innovación del Gobierno de España (Ref. CTQ2010-18271) and CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Spain for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Grases PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grases, F., Prieto, R.M., Costa-Bauza, A. (2017). Dietary Phytate and Interactions with Mineral Nutrients. In: Gutiérrez, O., Kalantar-Zadeh, K., Mehrotra, R. (eds) Clinical Aspects of Natural and Added Phosphorus in Foods. Nutrition and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6566-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6566-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6564-9

  • Online ISBN: 978-1-4939-6566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics