Skip to main content

Extraction of DNA from Human Skeletal Material

  • Protocol
  • First Online:
Forensic DNA Typing Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1420))

Abstract

In recent years the recovery and analysis of DNA from skeletal remains has been applied to several contexts ranging from disaster victim identification to the identification of the victims of conflict. Here are described procedures for processing the bone and tooth samples including mechanical and chemical cleaning, cutting and powdering in the presence of liquid nitrogen, complete demineralization of bone and tooth powder, DNA extraction, DNA purification using magnetic beads, and the precautions and strategies implemented to avoid and detect contamination. It has proven highly successful in the analysis of bones and teeth from Second World War victims’ skeletal remains that have been excavated from mass graves in Slovenia and is also suitable for genetic identification of relatively fresh human remains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154:53–61

    Article  CAS  PubMed  Google Scholar 

  2. Paabo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A 86:1939–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S (1996) DNA damage and DMA sequence retrieval from ancient tissues. Nucleic Acids Res 24:1304–1307

    Article  PubMed  PubMed Central  Google Scholar 

  4. Poinar HN, Höss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866

    Article  CAS  PubMed  Google Scholar 

  5. Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ (2001) Neanderthal DNA: not just old but old and cold? Nature 410:771–772

    Article  CAS  PubMed  Google Scholar 

  6. Smith CI, Chamberlain AT, Riley MS, Stringer C, Collins MJ (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217

    Article  PubMed  Google Scholar 

  7. Burger J, Hummel S, Herrmann B, Henke W (1999) DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis 20:1722–1728

    Article  CAS  PubMed  Google Scholar 

  8. Pruvost M, Schwarz R, Correia VB, Champlot S, Braguier S, Morel N et al (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci U S A 104:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malmstrom H (2007) Ancient DNA as a means to investigate the European neolithic. PhD Thesis. Uppsala, Uppsala University

    Google Scholar 

  10. Fulton LT (2012) Setting up an ancient DNA laboratory. In: Shapiro B, Hofreiter M, editors. Ancient DNA - Methods and Protocols. New York: Humana Press Inc 1–11

    Google Scholar 

  11. Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA-a review. Forensic Sci Int Genet 4:148–157

    Article  CAS  PubMed  Google Scholar 

  12. Alaeddini R (2012) Forensic implications of PCR inhibition - a review. Forensic Sci Int Genet 6:297–305

    Article  CAS  PubMed  Google Scholar 

  13. Lee HY, Park MJ, Kim NY, Sim JE, Yang WI, Shin KJ (2010) Simple and highly effective DNA extraction methods from old skeletal remains using silica columns. Forensic Sci Int Genet 4:275–280

    Article  CAS  PubMed  Google Scholar 

  14. Keyser-Tracqui C, Ludes B (2005) Methods for the study of ancient DNA. Methods Mol Biol 297:253–264

    CAS  PubMed  Google Scholar 

  15. Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762

    Article  CAS  PubMed  Google Scholar 

  16. Lee EJ, Luedtke JG, Allison JL, Arber CE, Merriwether DA, Steadman DW (2010) The effects of different maceration techniques on nuclear DNA amplification using human bone. J Forensic Sci 55:1032–1038

    Article  CAS  PubMed  Google Scholar 

  17. Anslinger K, Weichhold G, Keil W, Bayer B, Eisenmenger W (2001) Identification of the skeletal remains of Martin Bormann by mtDNA analysis. Int J Legal Med 114:194–196

    Article  CAS  PubMed  Google Scholar 

  18. Stone AC, Starrs JE, Stoneking M (2001) Mitochondrial DNA analysis of the presumptive remains of Jesse James. J Forensic Sci 46:173–176

    Article  CAS  PubMed  Google Scholar 

  19. Palo JU, Hedman M, Söderholm N, Sajantila A (2007) Repatriation and identification of Finnish World War II soldiers. Croat Med J 48:528–535

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Irwin JA, Edson SM, Loreille O, Just RS, Barritt SM, Lee DA et al (2007) DNA identification of “earthquake McGoon” 50 years postmortem. J Forensic Sci 52:1115–1118

    Article  CAS  PubMed  Google Scholar 

  21. Irwin JA, Leney MD, Loreille O, Barritt SM, Christensen AF, Holland TD et al (2007) Application of low copy number STR typing to the identification of aged, degraded skeletal remains. J Forensic Sci 52:1322–1327

    Article  CAS  PubMed  Google Scholar 

  22. Lee HY, Kim NY, Park MJ, Sim JE, Yang WI, Shin KJ (2010) DNA typing for the identification of old skeletal remains from Korean War victims. J Forensic Sci 55:1422–1429

    Article  CAS  PubMed  Google Scholar 

  23. Vanek D, Saskova L, Koch H (2009) Kinship and Y-chromosome analysis of 7th century human remains: novel DNA extraction and typing procedure for ancient material. Croat Med J 50:286–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bogdanowicz W, Allen M, Branicki W, Lembring M, Gajewska M, Kupiec T (2009) Genetic identification of putative remains of the famous astronomer Nicolaus Copernicus. Proc Natl Acad Sci U S A 106:12279–12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zupanič-Pajnič I (2013) Genetic identification of Second World War victim’s skeletal remains. Lap Lambert Academic Publishing, Saarbrucken

    Google Scholar 

  26. Zupanič-Pajnič I (2013) Molecular genetic analyses of 300-year old skeletons from Auersperg tomb. Zdravniski Vestnik 82:796–808

    Google Scholar 

  27. Zupanič-Pajnič I (2008) Molecular genetic identification of the Slovene home guard victims. Zdravniski Vestnik 77:745–750

    Google Scholar 

  28. Zupanič-Pajnič I, Pogorelc BG, Balazic J (2010) Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int J Legal Med 124:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cattaneo C, Craig OE, James NT, Sokol RJ (1997) Comparison of three DNA extraction methods on bone and blood stains up to 43 years old and amplification of three different gene sequences. J Forensic Sci 42:1126–1135

    Article  CAS  PubMed  Google Scholar 

  30. Bender K, Schneider PM, Rittner C (2000) Application of mtDNA sequence analysis in forensic casework for the identification of human remains. Forensic Sci Int 113:103–107

    Article  CAS  PubMed  Google Scholar 

  31. Hochmeister MN, Budowle B, Borer UV, Eggmann U, Comey CT, Dirnhofer R (1991) Typing of deoxyribonucleic acid (DNA) extracted from compact bone from human remains. J Forensic Sci 36:1649–1661

    CAS  PubMed  Google Scholar 

  32. Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1:191–195

    Article  PubMed  Google Scholar 

  33. Jakubowska J, Maciejewska A, Pawlowski R (2012) Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int J Legal Med 126:173–178

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amory S, Huel R, Bilic A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet 6:398–406

    Article  CAS  PubMed  Google Scholar 

  35. Zupanič-Pajnič I (2011) Highly efficient DNA extraction method from skeletal remains. Zdravniski Vestnik 80:171–181

    Google Scholar 

  36. Zupanc T, Balazic J, Stefanic B, Zupanic Pajnic I (2013) Performance of the human quantifiler, the investigator quantiplex and the investigator ESSplex plus kit for quantification and nuclear DNA typing of old skeletal remains. Rom J Leg Med 21:119–124

    Article  Google Scholar 

  37. Zupanič-Pajnič I, Gornjak Pogorelc B, Balažic J, Zupanc T, Štefanič B. Highly efficient nuclear DNA typing of the World War II skeletal remains using three new autosomal short tandem repeat amplification kits with the extended European Standard Set of loci. Croat Med J. 2012; 53(1):17–23

    Google Scholar 

  38. Zupanič-Pajnič I (2013) A comparative analysis of the AmpF1STR identifier and PowerPlex 16 autosomal short tandem repeat (STR) amplification kits on the skeletal remains excavated from Second World War mass graves in Slovenia. Romanian Journal of Legal Medicine 21:73–78

    Google Scholar 

  39. Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheimvandillen PME, Vandernoordaa J (1990) Rapid and simple method for purification of nucleic-acids. J Clin Microbiol 28:495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kishore R, Hardy WR, Anderson VJ, Sanchez NA, Buoncristiani MR (2006) Optimization of DNA extraction from low-yield and degraded samples using the BioRobot (R) EZ1 and BioRobot (R) M48. J Forensic Sci 51:1055–1061

    Article  CAS  PubMed  Google Scholar 

  41. Montpetit SA, Fitch IT, O’Donnell PT (2005) A simple automated instrument for DNA extraction in forensic casework. J Forensic Sci 50:555–563

    Article  CAS  PubMed  Google Scholar 

  42. Nagy M, Otremba P, Kruger C, Bergner-Greiner S, Anders P, Henske B et al (2005) Optimization and validation of a fully automated silica-coated magnetic beads purification technology in forensics. Forensic Sci Int 152:13–22

    Article  CAS  PubMed  Google Scholar 

  43. Valgren C, Wester S, Hansson O (2008) A comparison of three automated DNA purification methods in forensic casework. Forensic Sci Int Genet 1:76–77

    Article  Google Scholar 

  44. Zupanič-Pajnič I, Debska M, Gornjak-Pogorelc B, Vodopivec Mohorčič K, Balažic J, Zupanc T et al (2016) Highly efficient automated extraction of DNA from old and contemporary skeletal remains. J Forensic Legal Med 37:78–86

    Google Scholar 

  45. Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  CAS  PubMed  Google Scholar 

  46. Handt O, Richards M, Trommsdorff M, Kilger C, Simanainen J, Georgiev O et al (1994) Molecular-genetic analyses of the Tyrolean Ice Man. Science 264:1775–1778

    Article  CAS  PubMed  Google Scholar 

  47. Kolman CJ, Tuross N (2000) Ancient DNA analysis of human populations. Am J Phys Anthropol 111:5–23

    Article  CAS  PubMed  Google Scholar 

  48. Handt O, Krings M, Ward RH, Paabo S (1996) The retrieval of ancient human DNA sequences. Am J Hum Genet 59:368–376

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wandeler P, Smith S, Morin PA, Pettifor RA, Funk SM (2003) Patterns of nuclear DNA degeneration over time - a case study in historic teeth samples. Mol Ecol 12:1087–1093

    Article  CAS  PubMed  Google Scholar 

  50. Brown TA, Brown KA (1992) Ancient DNA and the archaeologist. Antiquity 66:10–23

    Article  Google Scholar 

  51. Graham EAM (2007) DNA reviews: ancient DNA. Forensic Sci Med Pathol 3:221–225

    Article  CAS  PubMed  Google Scholar 

  52. Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  Google Scholar 

  53. Pääbo S. Amplifying ancient DNA. In PCR-Protocols and Amplifications-A Laboratory Manual, ed. MA Innis, DH Gelfand, JJ Sninsky, TJ White, 1990, pp 159–66. San Diego: Academic

    Google Scholar 

  54. Wilson MR, Dizinno JA, Polanskey D, Replogle J, Budowle B (1995) Validation of mitochondrial-DNA sequencing for forensic casework analysis. Int J Legal Med 108:68–74

    Article  CAS  PubMed  Google Scholar 

  55. Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, Holland M et al (2000) DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. Int J Legal Med 113:193–196

    Article  CAS  PubMed  Google Scholar 

  56. Carracedo A, Bar W, Lincoln P, Mayr W, Morling N, Olaisen B et al (2000) DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 110:79–85

    Article  CAS  PubMed  Google Scholar 

  57. Kalmar T, Bachrati CZ, Marcsik A, Rasko I (2000) A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Res 28:e67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tully G, Bar W, Brinkmann B, Carracedo A, Gill P, Morling N et al (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91

    Article  CAS  PubMed  Google Scholar 

  59. Alonso A, Andelinovic S, Martin P, Sutlovic D, Erceg I, Huffine E et al (2001) DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J 42:260–266

    CAS  PubMed  Google Scholar 

  60. Davoren J, Vanek D, Konjhodzic R, Crews J, Huffine E, Parsons TJ (2007) Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croat Med J 48:478–485

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tamariz J, Voynarovska K, Prinz M, Caragine T (2006) The application of ultraviolet irradiation to exogenous sources of DNA in plasticware and water for the amplification of low copy number DNA. J Forensic Sci 51:790–794

    Article  CAS  PubMed  Google Scholar 

  62. Shaw K, Sesardic I, Bristol N, Ames C, Dagnall K, Ellis C et al (2008) Comparison of the effects of sterilisation techniques on subsequent DNA profiling. Int J Legal Med 122:29–33

    Article  PubMed  Google Scholar 

  63. Milos A, Selmanovic A, Smajlovic L, Huel RLM, Katzmarzyk C, Rizvic A et al (2007) Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J 48:486–493

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Misner LM, Halvorson AC, Dreier JL, Ubelaker DH, Foran DR (2009) The correlation between skeletal weathering and DNA quality and quantity. J Forensic Sci 54:822–828

    Article  CAS  PubMed  Google Scholar 

  65. Edson S, Ross JP, Coble MD, Parsons TJ, Barritt SM (2004) Naming the dead - confronting the realities of rapid identification of degraded skeletal remains. Forensic Sci Rev 16:64–89

    Google Scholar 

  66. Mundorff AZ, Bartelink EJ, Mar-Cash E (2009) DNA preservation in skeletal elements from the world trade center disaster: recommendations for mass fatality management. J Forensic Sci 54:739–745

    Article  CAS  PubMed  Google Scholar 

  67. Mundorff A, Davoren JM (2014) Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci Int Genet 8:55–63

    Article  CAS  PubMed  Google Scholar 

  68. Schwartz TR, Schwartz EA, Mieszerski L, Mcnally L, Kobilinsky L (1991) Characterization of deoxyribonucleic-acid (DNA) obtained from teeth subjected to various environmental-conditions. J Forensic Sci 36:979–990

    Article  CAS  PubMed  Google Scholar 

  69. Sweet D, Hildebrand D (1998) Recovery of DNA from human teeth by cryogenic grinding. J Forensic Sci 43:1199–1202

    CAS  PubMed  Google Scholar 

  70. Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102:13783–13788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sampietro ML, Gilbert MTP, Lao O, Caramelli D, Lari M, Bertranpetit J et al (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23:1801–1807

    Article  CAS  PubMed  Google Scholar 

  72. Gilbert MTP, Rudbeck L, Willerslev E, Hansen AJ, Smith C, Penkman KEH et al (2005) Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J Archaeol Sci 32:785–793

    Article  Google Scholar 

  73. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the contribution of Barbara Gornjak Pogorelc and Katja Vodopivec Mohorčič towards processing and DNA typing of bones and teeth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Zupanič Pajnič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pajnič, I.Z. (2016). Extraction of DNA from Human Skeletal Material. In: Goodwin, W. (eds) Forensic DNA Typing Protocols. Methods in Molecular Biology, vol 1420. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3597-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3597-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3595-6

  • Online ISBN: 978-1-4939-3597-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics