Skip to main content

Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with a median survival of 16.2–21.2 months post diagnosis (Stupp et al., N Engl J Med 352(10): 987–996, 2005). Because of its location, complete surgical resection is impossible; additionally because GBM is also resistant to chemotherapeutic and radiotherapy approaches, development of novel therapies is urgently needed. In this chapter we describe the development of preclinical animal models and a conditionally cytotoxic and immune-stimulatory gene therapy strategy that successfully causes tumor regression in several rodent GBM models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Candolfi M et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148

    Article  PubMed Central  PubMed  Google Scholar 

  2. Castro MG et al (2011) Gene therapy and targeted toxins for glioma. Curr Gene Ther 11(3):155–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. King GD et al (2005) Gene therapy and targeted toxins for glioma. Curr Gene Ther 5(6):535–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Radaelli E et al (2009) Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease. Histol Histopathol 24(7):879–891

    CAS  PubMed  Google Scholar 

  5. Baker GJ et al (2014) Mechanisms of glioma formation: iterative perivascular glioma growth and invasion leads to tumor progression, VEGF-independent vascularization, and resistance to antiangiogenic therapy. Neoplasia 16(7):543–561

    Article  PubMed Central  PubMed  Google Scholar 

  6. Assi H et al (2012) Gene therapy for brain tumors: basic developments and clinical implementation. Neurosci Lett 527(2):71–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Finsen B, Owens T (2011) Innate immune responses in central nervous system inflammation. FEBS Lett 585(23):3806–3812

    Article  CAS  PubMed  Google Scholar 

  8. Fabry Z et al (2008) Sensing the microenvironment of the central nervous system: immune cells in the central nervous system and their pharmacological manipulation. Curr Opin Pharmacol 8(4):496–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ali S et al (2005) Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res 65(16):7194–7204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Curtin JF et al (2005) Combining cytotoxic and immune-mediated gene therapy to treat brain tumors. Curr Top Med Chem 5(12):1151–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ghulam Muhammad AK et al (2009) Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression. Clin Cancer Res 15(19):6113–6127

    Article  CAS  PubMed  Google Scholar 

  13. Curtin JF et al (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6(1):e10

    Article  PubMed  Google Scholar 

  14. Akli S et al (1993) Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 3(3):224–228

    Article  CAS  PubMed  Google Scholar 

  15. Le Gal La Salle G et al (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259(5097):988–990

    Article  Google Scholar 

  16. Southgate T et al (2008) Gene transfer into neural cells in vitro using adenoviral vectors. Curr Protoc Neurosci. Chapter 4: p. Unit 4 23

    Google Scholar 

  17. Barcia C et al (2006) Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells. Neuron Glia Biol 2(4):309–322

    Article  PubMed  Google Scholar 

  18. Ng P, Graham FL (2002) Construction of first-generation adenoviral vectors. Methods Mol Med 69:389–414

    CAS  PubMed  Google Scholar 

  19. Bett AJ et al (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91(19):8802–8806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Thomas CE et al (2001) Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 3(1):36–46

    Article  CAS  PubMed  Google Scholar 

  21. Kreppel F et al (2002) Long-term transgene expression in the RPE after gene transfer with a high-capacity adenoviral vector. Invest Ophthalmol Vis Sci 43(6):1965–1970

    PubMed  Google Scholar 

  22. King GD et al (2008) High-capacity adenovirus vector-mediated anti-glioma gene therapy in the presence of systemic antiadenovirus immunity. J Virol 82(9):4680–4684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Puntel M et al (2010) Gene transfer into rat brain using adenoviral vectors. Curr Protoc Neurosci. Chapter 4: p. Unit 4 24

    Google Scholar 

  24. Glover CP et al (2003) Long-term transgene expression can be mediated in the brain by adenoviral vectors when powerful neuron-specific promoters are used. J Gene Med 5(7):554–559

    Article  CAS  PubMed  Google Scholar 

  25. Candolfi M et al (2011) B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 13(10):947–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Candolfi M et al (2014) Temozolomide does not impair gene therapy-mediated antitumor immunity in syngeneic brain tumor models. Clin Cancer Res 20(6):1555–1565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. King GD et al (2011) Combined Flt3L/TK gene therapy induces immunological surveillance which mediates an immune response against a surrogate brain tumor neoantigen. Mol Ther 19(10):1793–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mineharu Y et al (2014) Blockade of mTOR signaling via rapamycin combined with immunotherapy augments antiglioma cytotoxic and memory T-cell functions. Mol Cancer Ther 13(12):3024–3036

    Article  CAS  PubMed  Google Scholar 

  29. Mineharu Y et al (2011) Engineering the brain tumor microenvironment enhances the efficacy of dendritic cell vaccination: implications for clinical trial design. Clin Cancer Res 17(14):4705–4718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health/National Institute of Neurological Disorders & Stroke (NIH/NINDS) Grants U01-NS052465, U01-NS052465-S1, R01-NS074387, and R01-NS057711 to M.G.C.; NIH/NINDS Grants R01-NS054193, R01-NS061107, R01-NS082311, and R21-NS084275 to P.R.L.; the Department of Neurosurgery, University of Michigan School of Medicine; the Michigan Institute for Clinical and Health Research, NIH 2UL1-TR000433; University of Michigan Cancer Biology Training Grant, NIH/NCI (National Cancer Institute) T32-CA009676; University of Michigan Training in Clinical and Basic Neuroscience, NIH/NINDS T32-NS007222; and the University of Michigan Medical Scientist Training Program, NIH/NIGMS (National Institute of General Medicine Sciences) T32-GM007863. M.C. and M.A.M.A were supported by the Consejo Nacional de Ciencia y Tecnologia (CONICET PIP 114-201101-00353) and the Agencia Nacional de Promocion Cientifica y Tecnologica (PICT-2012-0830 and PICT-2013-0310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kamran, N. et al. (2016). Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_31

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics