Skip to main content

Using Molecular Replacement Phasing to Study the Structure and Function of RNA

  • Protocol
Nucleic Acid Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertus JD, Ladner JE, Finch JT et al (1974) Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250:546–551

    CAS  PubMed  Google Scholar 

  2. Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136:604–609

    CAS  PubMed  Google Scholar 

  3. Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure? Bioarchitecture 2:189–199

    PubMed Central  PubMed  Google Scholar 

  4. Westhof E, Romby P (2010) The RNA structurome: high-throughput probing. Nat Methods 7:965–967

    CAS  PubMed  Google Scholar 

  5. Muirhead H, Perutz MF (1963) Structure of haemoglobin. a three-dimensional fourier synthesis of reduced human haemoglobin at 5.5 A resolution. Nature 199:633–638

    CAS  PubMed  Google Scholar 

  6. Marcia M, Humphris-Narayanan E, Keating KS et al (2013) Solving nucleic acid structures by molecular replacement: examples from group II intron studies. Acta Crystallogr D 69:2174–2185

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Rossmann MG (2001) Molecular replacement–historical background. Acta Crystallogr D 57:1360–1366

    CAS  PubMed  Google Scholar 

  8. Toth EA (2007) Molecular replacement. Methods Mol Biol 364:121–148

    CAS  PubMed  Google Scholar 

  9. Robertson MP, Scott WG (2007) The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–1553

    CAS  PubMed  Google Scholar 

  10. Kazantsev AV, Krivenko AA, Pace NR (2009) Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA 15:266–276

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Marcia M, Pyle AM (2012) Visualizing group II intron catalysis through the stages of splicing. Cell 151:497–507

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Lau MW, Ferre-D'Amare AR (2013) An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Nat Chem Biol 9:805–810

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Grigg JC, Ke A (2013) Structural determinants for geometry and information decoding of tRNA by T Box Leader RNA. Structure 21:2025–2032

    CAS  PubMed  Google Scholar 

  14. Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336:915–918

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Stoddard CD, Widmann J, Trausch JJ et al (2013) Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J Mol Biol 425:1596–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Pyle AM (2010) The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 45:215–232

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Marcia M, Somarowthu S, Pyle AM (2013) Now on display: a gallery of group II intron structures at different stages of catalysis. Mob DNA 4:14

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ferre-d'Amare AR, Doudna JA (1997) Establishing suitability of RNA preparations for crystallization. Determination of polydispersity. Methods Mol Biol 74:371–377

    PubMed  Google Scholar 

  19. Toor N, Keating KS, Taylor SD et al (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Pereira MJ, Behera V, Walter NG (2010) Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity. PLoS One 5:e12953

    PubMed Central  PubMed  Google Scholar 

  21. Doudna JA (1997) Preparation of homogeneous ribozyme RNA for crystallization. Methods Mol Biol 74:365–370

    CAS  PubMed  Google Scholar 

  22. Golden BL (2007) Preparation and crystallization of RNA. Methods Mol Biol 363:239–257

    CAS  PubMed  Google Scholar 

  23. Garman E, Owen RL (2007) Cryocrystallography of macromolecules: practice and optimization. Methods Mol Biol 364:1–18

    CAS  PubMed  Google Scholar 

  24. Garman E, Sweet RM (2007) X-ray data collection from macromolecular crystals. Methods Mol Biol 364:63–94

    CAS  PubMed  Google Scholar 

  25. Arzt S, Beteva A, Cipriani F et al (2005) Automation of macromolecular crystallography beamlines. Prog Biophys Mol Biol 89:124–152

    CAS  PubMed  Google Scholar 

  26. Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800

    CAS  Google Scholar 

  28. Leslie AW, Powell H (2007) Processing diffraction data with MOSFLM. In: Sussman JL, Read RJ (eds) Evolving methods for macromolecular crystallography. Springer, Amsterdam, pp 41–51

    Google Scholar 

  29. Pflugrath JW (1999) The finer things in X-ray diffraction data collection. Acta Crystallogr D 55:1718–1725

    CAS  PubMed  Google Scholar 

  30. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    CAS  Google Scholar 

  31. Winter G, Lobley CM, Prince SM (2013) Decision making in xia2. Acta Crystallogr D 69:1260–1273

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Delageniere S, Brenchereau P, Launer L et al (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27:3186–3192

    CAS  PubMed  Google Scholar 

  33. Evans P, McCoy A (2008) An introduction to molecular replacement. Acta Crystallogr D 64:1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Costanzi S (2012) Homology modeling of class a G protein-coupled receptors. Methods Mol Biol 857:259–279

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Collaborative computational project number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 50:760–763

    Google Scholar 

  36. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder – a covariance model based RNA motif finding algorithm. Bioinformatics 22:445–452

    CAS  PubMed  Google Scholar 

  38. Nawrocki EP (2014) Annotating functional RNAs in genomes using Infernal. Methods Mol Biol 1097:163–197

    CAS  PubMed  Google Scholar 

  39. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Will S, Reiche K, Hofacker IL et al (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3:e65

    PubMed Central  PubMed  Google Scholar 

  41. Somarowthu S, Legiewicz M, Keating KS et al (2013) Visualizing the ai5gamma group IIB intron. Nucleic Acids Res 42:1947–1958

    PubMed Central  PubMed  Google Scholar 

  42. DeLano WL, Brunger AT (1995) The direct rotation function: Patterson correlation search applied to molecular replacement. Acta Crystallogr D 51:740–748

    CAS  PubMed  Google Scholar 

  43. Minor DL, Lin YF, Mobley BC et al (2000) The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102:657–670

    CAS  PubMed  Google Scholar 

  44. Storici P, Capitani G, De Biase D et al (1999) Crystal structure of GABA-aminotransferase, a target for antiepileptic drug therapy. Biochemistry 38:8628–8634

    CAS  PubMed  Google Scholar 

  45. Fabiane SM, Sohi MK, Wan T et al (1998) Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37:12404–12411

    CAS  PubMed  Google Scholar 

  46. Hausrath AC, Gruber G, Matthews BW et al (1999) Structural features of the gamma subunit of the Escherichia coli F(1) ATPase revealed by a 4.4-A resolution map obtained by x-ray crystallography. Proc Natl Acad Sci U S A 96:13697–13702

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Schrodinger LLC is a software company. Maybe the website can be mentioned: www.schrodinger.com

  48. Moore PB (1999) Ribosomes and the RNA world. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 119–135

    Google Scholar 

  49. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066

    CAS  PubMed  Google Scholar 

  51. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    CAS  PubMed  Google Scholar 

  52. Choudhary PK, Gallo S, Sigel RK (2014) Monitoring global structural changes and specific metal-ion-binding sites in RNA by in-line probing and Tb(III) cleavage. Methods Mol Biol 1086:143–158

    CAS  PubMed  Google Scholar 

  53. Costa M, Monachello D (2014) Probing RNA folding by hydroxyl radical footprinting. Methods Mol Biol 1086:119–142

    CAS  PubMed  Google Scholar 

  54. Biondi E, Burke DH (2014) RNA structural analysis by enzymatic digestion. Methods Mol Biol 1086:41–52

    CAS  PubMed  Google Scholar 

  55. Sachsenmaier N, Handl S, Debeljak F et al (2014) Mapping RNA structure in vitro using nucleobase-specific probes. Methods Mol Biol 1086:79–94

    CAS  PubMed  Google Scholar 

  56. Seetin MG, Kladwang W, Bida JP et al (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol Biol 1086:95–117

    CAS  PubMed  Google Scholar 

  57. Robertson MP, Chi YI, Scott WG (2010) Solving novel RNA structures using only secondary structural fragments. Methods 52:168–172

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Robertson MP, Scott WG (2008) A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives. Acta Crystallogr D 64:738–744

    CAS  PubMed Central  Google Scholar 

  59. Scott WG (2012) Challenges and surprises that arise with nucleic acids during model building and refinement. Acta Crystallogr D 68:441–445

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of Coot. Acta Crystallogr D 66:486–501

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53:240–255

    CAS  PubMed  Google Scholar 

  62. Brunger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921

    CAS  PubMed  Google Scholar 

  63. Zwart PH, Afonine PV, Grosse-Kunstleve RW et al (2008) Automated structure solution with the PHENIX suite. Methods Mol Biol 426:419–435

    CAS  PubMed  Google Scholar 

  64. Read RJ, McCoy AJ, Storoni LC (2007) Automated structure determination with Phenix. In: Sussman JL, Read RJ (eds) Evolving methods for macromolecular crystallography. Springer, Amsterdam, pp 91–100

    Google Scholar 

  65. Navaza J (2001) Implementation of molecular replacement in AMoRe. Acta Crystallogr D 57:1367–1372

    CAS  PubMed  Google Scholar 

  66. Long F, Vagin AA, Young P et al (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D 64:125–132

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D 66:22–25

    CAS  PubMed  Google Scholar 

  68. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    CAS  Google Scholar 

  69. Panjikar S, Parthasarathy V, Lamzin VS et al (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D 61:449–457

    PubMed  Google Scholar 

  70. Reddy V, Swanson SM, Segelke B et al (2003) Effective electron-density map improvement and structure validation on a Linux multi-CPU web cluster: The TB Structural Genomics Consortium Bias Removal Web Service. Acta Crystallogr D 59:2200–2210

    PubMed  Google Scholar 

  71. Claude J-B, Suhre K, Notredame C et al (2004) CaspR: a web server for automated molecular replacement using homology modelling. Nucleic Acids Res 32:W606–W609

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Strokopytov BV, Fedorov A, Mahoney NM et al (2005) Phased translation function revisited: structure solution of the cofilin-homology domain from yeast actin-binding protein 1 using six-dimensional searches. Acta Crystallogr D 61:285–293

    PubMed  Google Scholar 

  73. Schwarzenbacher R, Godzik A, Jaroszewski L (2008) The JCSG MR pipeline: optimized alignments, multiple models and parallel searches. Acta Crystallogr D 64:133–140

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kissinger CR, Gehlhaar DK, Fogel DB (1999) Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D 55:484–491

    CAS  PubMed  Google Scholar 

  75. Glykos NM, Kokkinidis M (2000) A stochastic approach to molecular replacement. Acta Crystallogr D 56:169–174

    CAS  PubMed  Google Scholar 

  76. Jamrog DC, Zhang Y, Phillips GN Jr (2003) SOMoRe: a multi-dimensional search and optimization approach to molecular replacement. Acta Crystallogr D 59:304–314

    PubMed  Google Scholar 

  77. Jogl G, Tao X, Xu Y et al (2001) COMO: a program for combined molecular replacement. Acta Crystallogr D 57:1127–1134

    CAS  PubMed  Google Scholar 

  78. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Luo D, Ding SC, Vela A et al (2011) Structural insights into RNA recognition by RIG-I. Cell 147:409–422

    CAS  PubMed Central  PubMed  Google Scholar 

  80. McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D 63:32–41

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Grosse-Kunstleve RW, Schneider TR (2007) Substructure determination in isomorphous replacement and anomalous diffraction experiments. Methods Mol Biol 364:197–214

    CAS  PubMed  Google Scholar 

  82. Smith GD, Lemke CT, Howell PL (2007) Substructure determination in multiwavelength anomalous diffraction, single anomalous diffraction, and single isomorphous replacement with anomalous scattering data using Shake-and-Bake. Methods Mol Biol 364:183–196

    CAS  PubMed  Google Scholar 

  83. Vonrhein C, Blanc E, Roversi P et al (2007) Automated structure solution with autoSHARP. Methods Mol Biol 364:215–230

    CAS  PubMed  Google Scholar 

  84. Das U, Chen S, Fuxreiter M et al (2001) Checking nucleic acid crystal structures. Acta Crystallogr D 57:813–828

    CAS  PubMed  Google Scholar 

  85. Tronrud DE (2007) Introduction to macromolecular refinement. Methods Mol Biol 364:231–254

    CAS  PubMed  Google Scholar 

  86. Keating KS, Pyle AM (2012) RCrane: semi-automated RNA model building. Acta Crystallogr D 68:985–995

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Keating KS, Pyle AM (2010) Semiautomated model building for RNA crystallography using a directed rotameric approach. Proc Natl Acad Sci U S A 107:8177–8182

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Winn MD, Murshudov GN, Papiz MZ (2003) Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol 374:300–321

    CAS  PubMed  Google Scholar 

  89. Pyle AM (2002) Metal ions in the structure and function of RNA. J Biol Inorg Chem 7:679–690

    CAS  PubMed  Google Scholar 

  90. Draper DE (2004) A guide to ions and RNA structure. RNA 10:335–343

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Leipply D, Lambert D, Draper DE (2009) Ion-RNA interactions thermodynamic analysis of the effects of mono- and divalent ions on RNA conformational equilibria. Methods Enzymol 469:433–463

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Draper DE (2013) Folding of RNA tertiary structure: linkages between backbone phosphates, ions, and water. Biopolymers 99:1105–1113

    CAS  PubMed  Google Scholar 

  93. Holbrook SR, Sussman JL, Warrant RW et al (1978) Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol 123:631–660

    CAS  PubMed  Google Scholar 

  94. Auffinger P, Grover N, Westhof E (2011) Metal ion binding to RNA. Met Ions Life Sci 9:1–35

    CAS  PubMed  Google Scholar 

  95. Cowan JA (1993) Metallobiochemistry of RNA. Co(NH3)6(3+) as a probe for Mg2+(aq) binding sites. J Inorg Biochem 49:171–175

    CAS  PubMed  Google Scholar 

  96. Basu S, Strobel SA (1999) Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain. RNA 5:1399–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Pley HW, Flaherty KM, Mckay DB (1994) 3-Dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    CAS  PubMed  Google Scholar 

  98. Edwards AL, Garst AD, Batey RT (2009) Determining structures of RNA aptamers and riboswitches by X-ray crystallography. Methods Mol Biol 535:135–163

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ban N, Nissen P, Hansen J et al (1999) Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 400:841–847

    CAS  PubMed  Google Scholar 

  100. Brennan S, Cowan PL (1992) A suite of programs for calculating x-ray absorption, reflection, and diffraction performance for a variety of materials at arbitrary wavelengths. Rev Sci Instrum 63:850–853

    Google Scholar 

  101. Agarwal RC (1978) A new least-squares refinement technique based on the fast Fourier transform algorithm. Acta Crystallogr A 34:791–809

    Google Scholar 

  102. Ten Eyck LF (1973) Crystal physics, diffraction, theoretical and general crystallography. Acta Crystallogr A 29:183–191

    Google Scholar 

  103. Mahler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438

    PubMed Central  PubMed  Google Scholar 

  104. Harding MM (2001) Geometry of metal-ligand interactions in proteins. Acta Crystallogr D 57:401–411

    CAS  PubMed  Google Scholar 

  105. Harding MM (2002) Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr D 58:872–874

    PubMed  Google Scholar 

  106. Erat MC, Sigel RK (2008) Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 13:1025–1036

    CAS  PubMed  Google Scholar 

  107. Korolev N, Lyubartsev AP, Laaksonen A et al (2002) On the competition between water, sodium ions, and spermine in binding to DNA: a molecular dynamics computer simulation study. Biophys J 82:2860–2875

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Quigley GJ, Teeter MM, Rich A (1978) Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A 75:64–68

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Auffinger P, Bielecki L, Westhof E (2004) Anion binding to nucleic acids. Structure 12:379–388

    CAS  PubMed  Google Scholar 

  110. Klein DJ, Ferre-D'Amare AR (2006) Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313:1752–1756

    CAS  PubMed  Google Scholar 

  111. Morin A, Eisenbraun B, Key J et al (2013) Collaboration gets the most out of software. Elife 2:e01456

    PubMed Central  PubMed  Google Scholar 

  112. Sigel RK, Sashital DG, Abramovitz DL et al (2004) Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nat Struct Mol Biol 11:187–192

    CAS  PubMed  Google Scholar 

  113. Zhang L, Doudna JA (2002) Structural insights into group II intron catalysis and branch-site selection. Science 295:2084–2088

    CAS  PubMed  Google Scholar 

  114. Humphris-Narayanan E, Pyle AM (2012) Discrete RNA libraries from pseudo-torsional space. J Mol Biol 421:6–26

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Prof. Anna Pyle and all members of the Pyle lab for constructive discussion and critical reading of the manuscript. All group II intron diffraction data were collected at beamlines 24-ID-C and E, NE-CAT, APS, Argonne (IL), USA, which are supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Specifically, at NE-CAT I thank Dr. Kanagalaghatta Rajashankar for precious discussion and for his help with phased molecular replacement experiments. This project was supported by the National Institute of Health (RO1GM50313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Marcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marcia, M. (2016). Using Molecular Replacement Phasing to Study the Structure and Function of RNA. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics