Skip to main content

GPCR Oligomerization Analysis by Means of BRET and dFRAP

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptor Screening Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1272))

Abstract

The spatiotemporal characterization of protein–protein interactions is essential to understand nearly all cellular events. Several methodological strategies derived from noninvasive luminescence- and fluorescence-based approaches allow the detection of specific protein–protein interactions in living cells. Here, we describe the application of bioluminescence resonance energy transfer (BRET) and donor fluorescent recovery after photobleaching (dFRAP) approaches to the study of G protein-coupled receptor (GPCR) oligomerization. These technologies alone – or in combination with complementary methods – can become extremely powerful approaches for visualizing these cellular protein–protein interactions, even between more than two proteins. Overall, these methods might become extremely important tools in GPCR drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eglen RM (2005) Emerging concepts in GPCR function – the influence of cell phenotype on GPCR pharmacology. Proc West Pharmacol Soc 48:31–34

    CAS  PubMed  Google Scholar 

  2. Ferré S, Casadó V, Devi LA et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434. doi:10.1124/pr.113.008052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ciruela F, Vallano A, Arnau JM et al (2010) G protein-coupled receptor oligomerization for what? J Recept Signal Transduct Res 30:322–330. doi:10.3109/10799893.2010.508166

    Article  CAS  PubMed  Google Scholar 

  4. Vilardaga J-P, Agnati LF, Fuxe K, Ciruela F (2010) G-protein-coupled receptor heteromer dynamics. J Cell Sci 123:4215–4220

    Article  CAS  Google Scholar 

  5. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3:981–983. doi:10.1038/nmeth972

    Article  CAS  PubMed  Google Scholar 

  6. Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19:338–343. doi:10.1016/j.copbio.2008.06.003

    Article  CAS  PubMed  Google Scholar 

  7. Ciruela F, Vilardaga J-P, Fernández-Dueñas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415

    Article  CAS  Google Scholar 

  8. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 2:55–75. doi:10.1002/andp.19484370105

    Article  Google Scholar 

  9. Cardullo RA (2007) Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy. Methods Cell Biol 81:479–494. doi:10.1016/S0091-679X(06)81023-X

    Article  CAS  PubMed  Google Scholar 

  10. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726. doi:10.1073/pnas.58.2.719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciruela F, Fernandez-Duenas V, Llorente J et al (2012) G protein-coupled receptor oligomerization and brain integration: Focus on adenosinergic transmission. Brain Res 1476:86–95, doi: 10.1016/j.brainres.2012.04.056; 10.1016/j.brainres.2012.04.056

    Article  CAS  Google Scholar 

  12. Canals M, Burgueno J, Marcellino D et al (2004) Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Neurochem 88:726–734, doi: 2200 [pii]

    Article  CAS  Google Scholar 

  13. Fernandez-Duenas V, Gomez-Soler M, Jacobson KA et al (2012) Molecular determinants of A(2A) R-D(2) R allosterism: role of the intracellular loop 3 of the D(2)R. J Neurochem 123:373–384. doi:10.1111/j.1471-4159.2012.07956.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants SAF2011-24779, Consolider-Ingenio CSD2008-00005, and PCIN-2013-019-C03-03 from Ministerio de Economía y Competitividad and ICREA Academia-2010 from the Catalan Institution for Research and Advanced Studies to F.C. Also, the authors belong to the “Neuropharmacology and Pain” accredited research group (Generalitat de Catalunya, 2014 SGR 1251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Fernández-Dueñas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ciruela, F., Fernández-Dueñas, V. (2015). GPCR Oligomerization Analysis by Means of BRET and dFRAP. In: Prazeres, D.M.F., Martins, S.A.M. (eds) G Protein-Coupled Receptor Screening Assays. Methods in Molecular Biology, vol 1272. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2336-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2336-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2335-9

  • Online ISBN: 978-1-4939-2336-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics