Skip to main content

Biofilm Formation in the 96-Well Microtiter Plate

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

The microtiter plate (also called 96-well plate) assay for studying biofilm formation is a method which allows for the observation of bacterial adherence to an abiotic surface. In this assay, bacteria are incubated in vinyl ā€œUā€-bottom or other types of 96-well microtiter plates. Following incubation, planktonic bacteria are rinsed away, and the remaining adherent bacteria (biofilms) are stained with crystal violet dye, thus allowing visualization of the biofilm. If quantitation is desired, the stained biofilms are solubilized and transferred to a 96-well optically clear flat-bottom plate for measurement by spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stickler DJ (2002) Susceptibility of antibiotic-resistant gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. Symp Ser Soc Appl Microbiol 163Sā€“170S

    Google ScholarĀ 

  2. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996ā€“1006

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67ā€“72

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Genevaux P, Muller S, Bauda P (1996) A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142:27ā€“30

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Oā€™Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449ā€“461

    ArticleĀ  Google ScholarĀ 

  6. Oā€™Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp (47):e2437. doi:10.3791/2437

    Google ScholarĀ 

  7. Merritt JH, Kadouri DE, Oā€™Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1, Unit 1B 1

    Google ScholarĀ 

  8. Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83:89ā€“105

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. McBain AJ (2009) Chapter 4: in vitro biofilm models: an overview. Adv Appl Microbiol 69:99ā€“132

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Redelman CV, Hawkins MA, Drumwright FR, Ransdell B, Marrs K, Anderson GG (2012) Inquiry-based examination of chemical disruption of bacterial biofilms. Biochem Mol Biol Educ 40:191ā€“197

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771ā€“1776

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Pettit RK, Weber CA, Pettit GR (2009) Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob 8:28

    ArticleĀ  Google ScholarĀ 

  13. Lembke C, Podbielski A, Hidalgo-Grass C, Jonas L, Hanski E, Kreikemeyer B (2006) Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol 72:2864ā€“2875

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Lin MH, Shu JC, Huang HY, Cheng YC (2012) Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS One 7:e34388

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Standar K, Kreikemeyer B, Redanz S, Munter WL, Laue M, Podbielski A (2010) Setup of an in vitro test system for basic studies on biofilm behavior of mixed-species cultures with dental and periodontal pathogens. PLoS One 5

    Google ScholarĀ 

  16. Yang Y, Jung DW, Bai DG, Yoo GS, Choi JK (2001) Counterion-dye staining method for DNA in agarose gels using crystal violet and methyl orange. Electrophoresis 22:855ā€“859

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Bonnekoh B, Wevers A, Jugert F, Merk H, Mahrle G (1989) Colorimetric growth assay for epidermal cell cultures by their crystal violet binding capacity. Arch Dermatol Res 281:487ā€“490

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7:e1001264

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Oā€™Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295ā€“304

    ArticleĀ  Google ScholarĀ 

  20. Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of ā€œinducibilityā€ in the synthesis of B-galactosidase by E. coli. J Mol Biol 1:165ā€“178

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Miao EA, Freeman JA, Miller SI (2002) Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J Bacteriol 184:1493ā€“1497

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Mulcahy H, Charron-Mazenod L, Lewenza S (2010) Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. Environ Microbiol 12:1621ā€“1629

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Musken M, Di Fiore S, Dotsch A, Fischer R, Haussler S (2010) Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 156:431ā€“441

    ArticleĀ  Google ScholarĀ 

  24. Martinez-Martinez L, Pascual A, Perea EJ (1991) Kinetics of adherence of mucoid and non-mucoid Pseudomonas aeruginosa to plastic catheters. J Med Microbiol 34:7ā€“12

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Fredheim, EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, Sollid JE (2009) Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47:1172ā€“1180

    Google ScholarĀ 

  26. Hubner NO, Matthes R, Koban I, Randler C, Muller G, Bender C, Kindel E, Kocher T, Kramer A (2010) Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23 Suppl 28ā€“34

    Google ScholarĀ 

Download references

Acknowledgements

This work is supported by RSFG (Indiana University Purdue University Indianapolis) and PRF (Purdue University) to Gregory G. Anderson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coffey, B.M., Anderson, G.G. (2014). Biofilm Formation in the 96-Well Microtiter Plate. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_48

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics