Skip to main content
Book cover

Hypoxia pp 301–323Cite as

Hypoxia and Its Acid–Base Consequences: From Mountains to Malignancy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

Hypoxia, depending upon its magnitude and circumstances, evokes a spectrum of mild to severe acid–base changes ranging from alkalosis to acidosis, which can alter many responses to hypoxia at both non-genomic and genomic levels, in part via altered hypoxia-inducible factor (HIF) metabolism. Healthy people at high altitude and persons hyperventilating to non-hypoxic stimuli can become alkalotic and alkalemic with arterial pH acutely rising as high as 7.7. Hypoxia-mediated respiratory alkalosis reduces sympathetic tone, blunts hypoxic pulmonary vasoconstriction and hypoxic cerebral vasodilation, and increases hemoglobin oxygen affinity. These effects and others can be salutary or counterproductive to tissue oxygen delivery and utilization, based upon magnitude of each effect and summation. With severe hypoxia either in the setting of profound arterial hemoglobin desaturation and reduced O2 content or poor perfusion (ischemia) at the global or local level, metabolic and hypercapnic acidosis develop along with considerable lactate formation and pH falling to below 6.8. Although conventionally considered to be injurious and deleterious to cell function and survival, both acidoses may be cytoprotective by various anti-inflammatory, antioxidant, and anti-apoptotic mechanisms which limit total hypoxic or ischemic–reperfusion injury. Attempts to correct acidosis by giving bicarbonate or other alkaline agents under these circumstances ahead of or concurrent with reoxygenation efforts may be ill advised. Better understanding of this so-called “pH paradox” or permissive acidosis may offer therapeutic possibilities. Rapidly growing cancers often outstrip their vascular supply compromising both oxygen and nutrient delivery and metabolic waste disposal, thus limiting their growth and metastatic potential. However, their excessive glycolysis and lactate formation may not necessarily represent oxygen insufficiency, but rather the Warburg effect—an attempt to provide a large amount of small carbon intermediates to supply the many synthetic pathways of proliferative cell growth. In either case, there is expression and upregulation of many genes involved in acid–base homeostasis, in part by HIF-1 signaling. These include a unique isoform of carbonic anhydrase (CA-IX) and numerous membrane acid–base transporters engaged to maintain an optimal intracellular and extracellular pH for maximal growth. Inhibition of these proteins or gene suppression may have important therapeutic application in cancer chemotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  2. Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcocci L, Scheuenstuhl H. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg. 1997;132:991–6.

    Article  CAS  PubMed  Google Scholar 

  3. Ahlskog JKJ, Dumelin CE, Truessel S, Marlind J, Neri D. In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives. Bioorg Med Chem Lett. 2009;19:4851–6.

    Article  CAS  PubMed  Google Scholar 

  4. Avkiran M. Rational basis for use of sodium-hydrogen exchange inhibitors in myocardial ischemia. Am J Cardiol. 1999;83:10G–8.

    Article  CAS  PubMed  Google Scholar 

  5. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94:1543–51.

    Article  PubMed  Google Scholar 

  6. Battke C, Kremmer E, Mysliwietz J, Gondi G, Dumitru C, Brandau S, et al. Generation and characterization of the first inhibitory antibody targeting tumour-associated carbonic anhydrase XII. Cancer Immunol Immunother. 2011;60:649.

    Article  CAS  PubMed  Google Scholar 

  7. Bauer S, Oosterwijk-Wakka JC, Adrian N, Oosterwijk E, Fischer E, Wüest T, et al. Targeted therapy of renal cell carcinoma: synergistic activity of cG250-TNF and IFNg. Int J Cancer. 2009;125:115–23.

    Article  CAS  PubMed  Google Scholar 

  8. Becker HM, Klier M, Deitmer JW. Nonenzymatic augmentation of lactate transport via mono-carboxylate transporter isoform 4 by carbonic anhydrase II. J Membr Biol. 2010;234:125–35.

    Article  CAS  PubMed  Google Scholar 

  9. Beecher HK, Murphy AJ. Acidosis during thoracic surgery. J Thorac Surg. 1950;19:50–70.

    CAS  PubMed  Google Scholar 

  10. Berger DS, Fellner SK, Robinson KA, Vlasica K, Godoy IE, Shroff SG. Disparate effects of three types of acidosis on left ventricular function. Am J Physiol. 1999;276:H582–94.

    CAS  PubMed  Google Scholar 

  11. Bidani A, Heming T. Effects of bafilomycin A1 on functional capabilities of LPS-activated alveolar macrophages. J Leukoc Biol. 1995;57:275–81.

    CAS  PubMed  Google Scholar 

  12. Bond JM, Herman B, Lemasters JJ. Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Biochem Biophys Res Commun. 1991;179:798–803.

    Article  CAS  PubMed  Google Scholar 

  13. Boron WF. Regulation of intracellular pH. Adv Physiol Educ. 2004;28:160–79.

    Article  PubMed  Google Scholar 

  14. Boron WF. Gas channels. Exp Physiol. 2010;95:1107–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brahimi-Horn MC, Bellot G, Pouyssegur J. Hypoxia and energetic tumor metabolism. Curr Opin Genet Dev. 2011;21:67.

    Article  CAS  PubMed  Google Scholar 

  16. Brogan TV, Robertson HT, Lamm WJ, Souders JE, Swenson ER. Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis. J Appl Physiol. 2004;96:1894–8.

    Article  PubMed  Google Scholar 

  17. Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587:5591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burnier M, Van Putten VJ, Schieppatti A, Schier RW. Effect of extracellular acidosis on 45Ca uptake in isolated hypoxic proximal tubules. Am J Physiol. 1988;254:C839–46.

    CAS  PubMed  Google Scholar 

  19. Butler PJ. High fliers: the physiology of bar-headed geese. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:325–9.

    Article  PubMed  CAS  Google Scholar 

  20. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.

    Article  CAS  PubMed  Google Scholar 

  21. Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM. Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One. 2010;5:e10857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chapman RF, Stray-Gundersen J, Levine BD. Epo production at altitude in elite endurance athletes is not associated with the sea level hypoxic ventilatory response. J Sci Med Sport. 2010;13:624–30.

    Article  PubMed  Google Scholar 

  23. Chegwidden WR, Spencer IM. Sulphonamide inhibitors of carbonic anhydrase inhibit the growth of human lymphoma cells in culture. Inflammopharmacology. 1995;3:231–9.

    Article  CAS  Google Scholar 

  24. Chegwidden WR, Spencer IM. Sulphonamide inhibitors of carbonic anhydrase inhibit the growth of human lymphoma cells in culture. Immunopharmacology. 1996;3:231–9.

    Google Scholar 

  25. Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by countering acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69:358–68.

    Article  CAS  PubMed  Google Scholar 

  26. Chopra A (2010) 111In-labeled monovalent Fab fragment of chimeric monoclonal antibody cG250 directed against carbonic anhydrase IX. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda, MD: National Center for Biotechnology Information (US); 2004–2010

    Google Scholar 

  27. Cianchi F, Vinci MC, Supuran CT, Peruzzi B, De Giuli P, Fasolis G. Selective inhibition of carbonic anhydrase IX decreases cell proliferation and induces ceramide-mediated apoptosis in human cancer cells. J Pharmacol Exp Ther. 2010;334:710–9.

    Article  CAS  PubMed  Google Scholar 

  28. Clerici C, Planes C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol. 2009;296:L267–74.

    CAS  Google Scholar 

  29. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning; staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007;115:1895–903.

    Article  PubMed  Google Scholar 

  30. Collier DM, Synder PM. Extracellular protons regulate human ENaC by modulating Na + self inhibition. J Biol Chem. 2009;284:792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cooper DJ, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med. 1990;112:492–8.

    Article  CAS  PubMed  Google Scholar 

  32. Currin RT, Gores GJ, Thurman RG, Lemasters JJ. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB J. 1991;5:207–10.

    CAS  PubMed  Google Scholar 

  33. Darioli R, Perret C. Mechanically controlled hypoventilation in status asthmaticus. Am Rev Respir Dis. 1984;129:385–7.

    CAS  PubMed  Google Scholar 

  34. Das A, Banik NL, Ray SK. Modulatory effects of acetazolamide and dexamethasone on temozolimide mediated apoptosis in human gliobastoma T98G and U87MG cells. Cancer Invest. 2008;26:352–8.

    Article  CAS  PubMed  Google Scholar 

  35. Dawson CA. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 1984;64:544–616.

    CAS  PubMed  Google Scholar 

  36. De Simone G, Supuran CT. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta. 2010;1804:404–9.

    Article  PubMed  CAS  Google Scholar 

  37. DiBona G, Koop U. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    CAS  PubMed  Google Scholar 

  38. Dorai T, Sawczuk I, Pastorek J, Wiernik PH, Dutcher JP. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Cancer Invest. 2006;24:1–26.

    Article  CAS  Google Scholar 

  39. Dorrington KL, Balanos GM, Talbot NP, Robbins PA. Extent to which pulmonary vascular responses to PCO2 and PO2 play a functional role within the healthy human lung. J Appl Physiol. 2010;108:1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duplain H, Vollenweider L, Delabays A, Nicod P, Bärtsch P, Scherrer U. Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation. 1999;99:1713–8.

    Article  CAS  PubMed  Google Scholar 

  41. Durkot MJ, De Garavilla L, Caretti D, Francesconi R. The effects of dichloroacetate on lactate accumulation and endurance in an exercising rat model. Int J Sports Med. 1995;16:167–71.

    Article  CAS  PubMed  Google Scholar 

  42. Eckardt KU, Kurtz A, Bauer C. Triggering of erythropoietin production by hypoxia is inhibited by respiratory and metabolic acidosis. Am J Physiol. 1990;258:R678–83.

    CAS  PubMed  Google Scholar 

  43. Effros RM, Swenson ER. Acid-base balance. In: Mason RJ, Broadddus VC, Martin TR, Schraufnagel DE, Murray JF, Nadel JA, editors. Textbook of respiratory medicine. Philadelphia, PA: Saunders Elsevier; 2010. p. 134–58.

    Google Scholar 

  44. Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJ, Lucas RA, Donnelly J, Cotter JD, Ainslie PN. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol. 2010;588:539–49.

    Article  CAS  PubMed  Google Scholar 

  45. Flacke JP, Kumar S, Kostlin S, Reusch HP, Ladilov Y. Acidic preconditioning protects endothelial cells against apoptosis by p38- and Akt-dependent BcL-xL overexpression. Apoptosis. 2009;14:90–6.

    Article  CAS  PubMed  Google Scholar 

  46. Frans A, Clerbaux T, Willems E, Kreuzer F. Effect of metabolic acidosis on pulmonary gas exchange of artificially ventilated dogs. J Appl Physiol. 1993;74(5):2301–8.

    CAS  PubMed  Google Scholar 

  47. Gazmuri RJ, Ayoub IM, Kolarova JD, Kamazyn M. Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Crit Care Med. 2002;30:S166–71.

    Article  CAS  PubMed  Google Scholar 

  48. Gil S, Zaderenzo P, Cruz F, Cerdan S, Ballesteros P. Imidazol-1-ylalkanoic acids as extrinsic 1H -NMR probes for the determination of intracellular pH, extracellular pH and cell volume. Bioorg Med Chem. 1994;2:305–14.

    Article  CAS  PubMed  Google Scholar 

  49. Gillies RJ, Liu Z, Bhujwalla Z. 31P-NMR measurements of extracellular pH of tumors using 3-amino-propylphosphonate. Am J Physiol. 1994;267:C195–203.

    CAS  PubMed  Google Scholar 

  50. Gilmartin G, Tamisier R, Anand A, Cunningotn D, Weiss JW. Evidence of impaired hypoxic vasodilation after intermediate-duration hypoxic exposure in humans. Am J Physiol. 2006;291:H2173–80.

    CAS  Google Scholar 

  51. Gores GJ, Niemann AL, Wray BE, Herman B, LeMasters JJ. Intracellular pH during chemical hypoxia in cultured rat hepatocytes: protection by intracellular acidosis against the onset of death. J Clin Invest. 1989;83:386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graf H, Leach W, Arieff AI. Metabolic effects of sodium bicarbonate in hypoxic lactic acidosis in dogs. Am J Physiol. 1985;249:F630–5.

    CAS  PubMed  Google Scholar 

  53. Griffiths JR, Stevens AN, Iles RA, Gordon RE, Shaw D. 31P-NMR investigation of solid tumors in the living rat. Biosci Rep. 1981;1:319–25.

    Article  CAS  PubMed  Google Scholar 

  54. Grocott MP, Martin DS, Levitt DZ, McMorrow R, Windsor J, Montgomery HE, et al. Arterial blood gases and oxygen content in climbers on Mt Everest. N Engl J Med. 2009;360:140–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gros G, Moll W, Hoppe H, Gros H. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer. J Gen Physiol. 1976;67:773–90.

    Article  CAS  PubMed  Google Scholar 

  56. Gullino PM, Grantham FH, Smith SH, Haggerty AC. Modifications of the acid-base status of the internal milieu of tumors. J Natl Cancer Inst. 1965;34:857–69.

    CAS  PubMed  Google Scholar 

  57. Hallerdei J, Scheibe RJ, Parkkila S, Waheed A, Sly WS, et al. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle. PLoS One. 2010;5:e15137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hebbel RP, Eaton JW, Kronenberg RS, Moore LG, Berger EM. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest. 1978;62:593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Helperin FA, Cheema-Dhadi S, Bun-Chen CB, Helperin ML. Alkali therapy extends the period of survival during hypoxia: studies in rats. Am J Physiol. 1996;271:R381–7.

    Google Scholar 

  60. Higashida T, Peng C, Li J, Dornbos D, Teng K, Li X, et al. Hypoxia-inducible factor-1alpha contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res. 2011;8:44–51.

    Article  CAS  PubMed  Google Scholar 

  61. Hohenhaus E, Paul A, McCullough RE, Kücherer H, Bärtsch P. Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J. 1995;8:1825–33.

    Article  CAS  PubMed  Google Scholar 

  62. Hood VL, Tannen RL. Protection of acid-base balance by pH regulation of acid production. N Engl J Med. 1998;339:819–26.

    Article  CAS  PubMed  Google Scholar 

  63. Hornbein TF, Townes BD, Schoene RB, Sutton JR, Houston CS. The cost to the central nervous system of climbing to extremely high altitude. N Engl J Med. 1989;321:1714171.

    Article  Google Scholar 

  64. Hulikova A, Zatovicova M, Svastova E, Ditte P, Brasseur R, Kettmann R, et al. Intact intracellular tail is critical for proper functioning of the tumor-associated, hypoxia-regulated carbonic anhydrase IX. FEBS Lett. 2009;583:3563–8.

    Article  CAS  PubMed  Google Scholar 

  65. Hulter HN, Krapf R. Interrelationships among hypoxia-inducible factor biology and acid-base equilibrium. Semin Nephrol. 2006;26:454–65.

    Article  CAS  PubMed  Google Scholar 

  66. Ihnatko R, Kubes M, Takacova M, Sedlakova O, Sedlak J, Pastorek J, et al. Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. Int J Oncol. 2006;29:1025–33.

    CAS  PubMed  Google Scholar 

  67. Innocenti A, Pastorekova S, Pastorek J, Scozzafava A, De Simone G, Supuran CT. The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as an intrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett. 2009;19:5825–8.

    Article  CAS  PubMed  Google Scholar 

  68. Inserte J, Barba I, Hernando V, Abellan A, Ruiz-Meana M, Rodriguez-Sinbovas A, Garcia-Dorado D. Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovasc Res. 2008;77:782–90.

    Article  CAS  PubMed  Google Scholar 

  69. Ivanov S, Liao SY, Ivanov A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, et al. Expression of hypoxia-inducible cell surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158:905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–8.

    Article  CAS  PubMed  Google Scholar 

  71. Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol. 2004;286:E245–51.

    CAS  Google Scholar 

  72. Kallinowski F, Schlenger KH, Runkel S, Kloes M, Stohrer M, Okunieff P, et al. Blood flow, metabolism, cellular microenvironment and growth rate of human tumor xenografts. Cancer Res. 1989;49:3759–64.

    CAS  PubMed  Google Scholar 

  73. Kaluz S, Kaluzova M, Liao SY, Lerman M, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta. 2009;1795:162–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Klaussen T, Christensen H, Hansen JM, Nielsen OJ, Fogh-Andersen N, Olsen NV. Human erythropoietin response to hypocapnic hypoxia, normocapnic hypoxia and hypocapnic normoxia. Eur J Appl Physiol. 1996;74:475–80.

    Article  Google Scholar 

  75. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci. 2002;99:821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Komori M, Takada K, Tomizawa Y, Nishiyama K, Kawamata M, Ozaki M. Permissive range of hypercapnia for improved peripheral microcirculation and cardiac output in rabbits. Crit Care Med. 2007;35:2171–5.

    Article  PubMed  Google Scholar 

  77. Koukourakis MI, Pitiakoudis M, Giatromanolaki A, Tsarouha A, Polychronidis A, Sivridis E, et al. Oxygen and glucose consumption in gastrointestinal adenocarcinomas: correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer Sci. 2006;97:1056–60.

    Article  CAS  PubMed  Google Scholar 

  78. Kregenow DA, Rubenfeld GF, Hudson LD, Swenson ER. Hypercapnia and mortality in acute lung injury. Crit Care Med. 2006;34:1–7.

    Article  PubMed  Google Scholar 

  79. Kregenow DA, Swenson ER. Hypercapnic acidosis: implications for permissive and therapeutic hypercapnia. Eur Respir J. 2002;20:6–11.

    Article  CAS  PubMed  Google Scholar 

  80. Kumar S, Reusch HP, Ladilov YV. Acidic preconditioning suppresses apoptosis and increases expression of Bcl-xL in coronary artery endothelial cells under simulated ischemia. J Cell Mol Med. 2008;12:1584–92.

    Article  CAS  PubMed  Google Scholar 

  81. Laffey JG, Engelberts D, Kavanagh BP. Injurious effects of hypocapnic alkalosis in the isolated lung. Am J Respir Crit Care Med. 2000;162:399–405.

    Article  CAS  PubMed  Google Scholar 

  82. Lamb GD, Stephenson DG, Bangsbo J, Juel C. Point:Counterpoint: lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol. 2006;100:1410–4.

    Article  CAS  PubMed  Google Scholar 

  83. Lardner A. The effects of extracellular pH in immune function. J Leukoc Biol. 2001;69:522–30.

    CAS  PubMed  Google Scholar 

  84. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na + K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871–5.

    Article  CAS  PubMed  Google Scholar 

  85. Linz WJ, Busch AE. NHE-1 inhibition: from protection during acute ischemia-reperfusion to prevention/reversal of myocardial remodeling. Naunyn Schmiedebergs Arch Pharmacol. 2003;68:239–44.

    Article  CAS  Google Scholar 

  86. Litt L, González-Méndez R, Severinghaus JW, Hamilton WK, Shuleshko J, Murphy-Boesch J, James TL. Cerebral intracellular changes during supercarbia: an in vivo 31P nuclear magnetic resonance study in rats. J Cereb Blood Flow Metab. 1985;5:537–44.

    Article  CAS  PubMed  Google Scholar 

  87. Machida Y, Ueda Y, Shimasaki M, Sato K, Sagawa M, Katsuda S, Sakuma T. Relationship of aquaporin 1,3 and 5 expression in lung cancer cells to cellular differentiation, invasive growth and metastasis potential. Hum Pathol. 2011;42:669.

    Article  CAS  PubMed  Google Scholar 

  88. Maddock RJ. The lactic acid response to alkalosis in panic disorder: an integrative review. J Neuropsychiatry Clin Neurosci. 2001;13:22–34.

    Article  CAS  PubMed  Google Scholar 

  89. Maggiorini M, Brunner-La Rocca HP, Peth S, Fischler M, Böhm T, Bernheim A, et al. Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: a randomized trial. Ann Intern Med. 2006;145:497–506.

    Article  PubMed  Google Scholar 

  90. Mairbaeurl H, Oelz O, Bartsch P. Interactions between Hb, Mg, DPG, ATP, and Cl determine the change in Hb-O2 affinity at high altitude. J Appl Physiol. 1993;74:40–8.

    Article  CAS  Google Scholar 

  91. Marcinek DJ, Kushmerick MJ, Conley KE. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J Appl Physiol. 2010;108:1479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol. 1993;265:1015–29.

    Google Scholar 

  93. Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, Smith D, Dalton WS, Gillies RJ. pH and drug resistance. I. Functional expression of plasmalemmal V-type H + -ATPase in drug resistant human breast carcinoma cell lines. Biochem Pharmacol. 1999;57:1037–46.

    Article  PubMed  Google Scholar 

  94. Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 2010;1797:1225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl- disturbances and Na + -K+ pump inactivation: implications for fatigue. J Appl Physiol. 2008;104:288–95.

    Article  CAS  PubMed  Google Scholar 

  96. Mekhail K, Gunaratnam L, Bonicalzi ME, Lee S. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol. 2004;6:642–7.

    Article  CAS  PubMed  Google Scholar 

  97. Mullin JM, Gabello M, Murray LJ, Farrell CP, Bellows J, Wolov KR, Kearney KR, Rudolph D, Thornton JJ. Proton pump inhibitors: actions and reactions. Drug Discov Today. 2000;14:647–60.

    Article  CAS  Google Scholar 

  98. Myrianthefs PM, Briva A, Lecuona E, Dumasius V, Rutschman DH, Ridge KM, et al. Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Am J Respir Crit Care Med. 2005;171:1267–71.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Narins RG, Cohen JJ. Bicarbonate therapy for organic acidosis: the case for its continued use. Ann Intern Med. 1987;106:615–8.

    Article  CAS  PubMed  Google Scholar 

  100. Nice B, Ribatti D. Aquaporins in tumor growth and angiogenesis. Cancer Lett. 2010;294:135–8.

    Article  CAS  Google Scholar 

  101. Nichol AD, O’Cronin DF, Naughton F, Hopkins N, Boylan J, McLoughlin P. Hypercapnic acidosis reduces oxidative reactions in endotoxin-induced lung injury. Anesthesiology. 2010;113:116–25.

    Article  CAS  PubMed  Google Scholar 

  102. Nielsen HB. pH after competitive rowing: the lower physiological range. Acta Physiol Scand. 1999;165:113–4.

    Article  CAS  PubMed  Google Scholar 

  103. O’Croinin DF, Nichol AD, Hopkins N, Boylan J, O’Brien S, O’Connor C, Laffey JG, McLoughlin P. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit Care Med. 2008;36:2128–35.

    Article  PubMed  Google Scholar 

  104. Okuda Y, Adrogue HJ, Field JB, Nohara H, Yamashita K. Counterproductive effects of bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab. 1996;81:314–20.

    CAS  PubMed  Google Scholar 

  105. Ogoh S, Nakahara H, Ainslie PN, Miyamoto T. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia. J Appl Physiol. 2010;108:538–43.

    Article  PubMed  Google Scholar 

  106. O’Neill M, Sears CE, Paterson DJ. Interactive effects of K+, acid, norepinephrine, and ischemia on the heart: implications for exercise. J Appl Physiol. 1997;82:1046–52.

    PubMed  Google Scholar 

  107. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, et al. Post-conditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res. 2010;87:406–23.

    Article  CAS  PubMed  Google Scholar 

  108. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show anti-metastatic activity in a model of breast cancer metastasis. J Med Chem. 2011;54:1896.

    Article  CAS  PubMed  Google Scholar 

  109. Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S, et al. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vivo. Proc Natl Acad Sci U S A. 2000;97:2220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol. 2011;226:299–308.

    Article  CAS  PubMed  Google Scholar 

  111. Pederson TH, De Paoli F, Nielson OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol. 2005;125:237–46.

    Article  CAS  Google Scholar 

  112. Peng YJ, Nanduri J, Khan SA, Yuan G, Wang N, Kinsman B, et al. Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011;108:3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Petschow D, Würdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C. Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol. 1977;42:139–43.

    CAS  PubMed  Google Scholar 

  114. Potkin R, Swenson ER. Resuscitation form severe acute hypercarbia: determinants of tolerance and survival. Chest. 1992;102:1742–5.

    Article  CAS  PubMed  Google Scholar 

  115. Poulsen SA. Carbonic anhydrase inhibition as a cancer therapy; a review of patent literature, 2007-2009. Expert Opin Ther Pat. 2010;20:795–806.

    Article  CAS  PubMed  Google Scholar 

  116. Powell FL, Kim BC, Johnson SR, Fu Z. Oxygen sensing in the brain--invited article. Adv Exp Med Biol. 2009;648:369–76.

    Article  CAS  PubMed  Google Scholar 

  117. Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22:3443–9.

    Article  CAS  PubMed  Google Scholar 

  118. Raghunand N, Gillies RJ. pH and chemotherapy. In: Novartis foundation symposium, vol. 240. Chichester: Wiley; 2001. p. 199–231.

    Google Scholar 

  119. Refsum HE, Opdahl H, Leraand S. Effect of extreme metabolic acidosis on oxygen delivery capacity of blood- an in vitro investigation of changes in the oxyhemoglobin dissociation curve in blood with pH values of approximately 6.30. Crit Care Med. 1997;25:1497–501.

    Article  CAS  PubMed  Google Scholar 

  120. Relman AS. Metabolic consequences of acid-base disorders. Kidney Int. 1972;1:347–59.

    Article  CAS  PubMed  Google Scholar 

  121. Richardson RS, Leigh JS, Wagner PD, Noyszewski EA. Cellular PO2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle. J Appl Physiol. 1999;87:325–31.

    CAS  PubMed  Google Scholar 

  122. Robach P, Déchaux M, Jarrot S, Vaysse J, Schneider JC, Mason NP, et al. Operation Everest III: role of plasma volume expansion on VO2max during prolonged high-altitude exposure. J Appl Physiol. 2000;89:29–37.

    CAS  PubMed  Google Scholar 

  123. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol. 2004;287:R502–16.

    CAS  Google Scholar 

  124. Robertson N, Potter C, Harris AL. Role of carbonic anhydrase IX in human tumor cell growth, survival and invasion. Cancer Res. 2004;64:6160–5.

    Article  CAS  PubMed  Google Scholar 

  125. Robey IF, Bagett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 2009;69:2260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rowell LB. Muscle blood flow in humans: how high can it go? Med Sci Sports Exerc. 1998;20(5 Suppl):S97–103.

    Google Scholar 

  127. Schafer C, Ladilov YV, Siegmund B, Piper HM. Importance of bicarbonate transport of protection of cardiomyocytes against reoxygenation injury. Am J Physiol. 2000;278:H1457–63.

    CAS  Google Scholar 

  128. Semenza GL. Defining the role of hypoxia-inducible factor-1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    Article  CAS  PubMed  Google Scholar 

  129. Sheehan DW, Klocke RA, Fahri LE. Hypoxic pulmonary vasoconstriction: how strong, how fast? Respir Physiol. 1992;87:337–72.

    Article  Google Scholar 

  130. Shibata K, Cregg N, Engelberts D, Takeuchi A, Fedorko L, Kavanagh BP. Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med. 1998;158:1578–84.

    Article  CAS  PubMed  Google Scholar 

  131. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol. 2006;291:L941–9.

    CAS  Google Scholar 

  132. Shimokawa O, Matsui H, Nagano Y, Kaneko T, Shibahara T, Nakahara A, et al. Neoplastic transformation and induction of H, K –ATPase by N-methyl-N′-nitro-N-nitrosoguanidine in the gastric epithelial RGM-1cell line. In Vitro Cell Dev Biol Anim. 2008;44:26–30.

    Article  CAS  PubMed  Google Scholar 

  133. Sillos EM, Shenep JL, Burghen GA, Pui CH, Behm FG, Sandlund JT. Lactic acidosis: a metabolic complication of hematologic malignancies. Cancer. 2001;92:2237–46.

    Article  CAS  PubMed  Google Scholar 

  134. Silva AS, Yunes J, Gillies RJ, Gatenby RA. The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res. 2009;69:2677–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Slinger P, Bludell PE, Metcalf IR. Management of massive grain aspiration. Anesthesiology. 1997;87:993–5.

    Article  CAS  PubMed  Google Scholar 

  136. Snow JB, Kitzis V, Norton CE, Torres SN, Johnson KD, Kanagy NL, et al. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol. 2008;104:110–8.

    Article  CAS  PubMed  Google Scholar 

  137. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med. 1992;327:1564–9.

    Article  CAS  PubMed  Google Scholar 

  138. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, et al. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol. 2005;567:225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Svichar N, Chesler M. Surface carbonic anhydrase activity on astrocytes and neurons facilitates lactate transport. Glia. 2003;41:415–9.

    Article  PubMed  Google Scholar 

  140. Swenson ER, Duncan T, Goldberg SV, Ahmad S, Ramirez G, Schoene RB. The effect of hypoxia in humans and its relationship to the hypoxic ventilatory response. J Appl Physiol. 1995;78:377–83.

    CAS  PubMed  Google Scholar 

  141. Swenson ER, Robertson HT, Hlastala MP. Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am J Respir Crit Care Med. 1994;149:1563–9.

    Article  CAS  PubMed  Google Scholar 

  142. Swenson ER. Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression. Eur Respir J. 1998;12:1242–7.

    Article  CAS  PubMed  Google Scholar 

  143. Swenson ER. Hypercapnic acidosis and sepsis: sailing too close to the wind? Anesthesiology. 2010;112:269–71.

    Article  PubMed  Google Scholar 

  144. Swenson ER. Metabolic acidosis. Respir Care. 2001;46:342–53.

    CAS  PubMed  Google Scholar 

  145. Swietach P, Hulikova A, Vaughan-Jones R, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumor pH regulation. Oncogene. 2010;29:5609–21.

    Article  CAS  Google Scholar 

  146. Swietach P, Patier S, Supuran CT, Harris AL, Vaughan-Jones RD. The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three dimensional tumor cell growths. J Biol Chem. 2009;284:20299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Taylor DV, Boyajian JG, James N, Woods D, Chicz-Demet A, Wilson AF, Sandman CA. Acidosis stimulates beta endorphin release during exercise. J Appl Physiol. 1994;77:1913–8.

    CAS  PubMed  Google Scholar 

  148. Teicher BA, Liu SD, Holden SA, Herman TS. A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res. 1993;13:1549–56.

    CAS  PubMed  Google Scholar 

  149. Turek Z, Kreuzer F, Scotto P, Rakusan K. The effect of blood O2 affinity on the efficiency of O2 transport in blood at hypoxic hypoxia. Adv Exp Med Biol. 1984;180:357–68.

    Article  CAS  PubMed  Google Scholar 

  150. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Verkman AS, Hara-Chikuma M, Papadopoulus MC. Aquaporins- new players in cancer biology. J Mol Med. 2008;86:523–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Volk T, Jahde E, Fortmeyer HP, Glusenklamp KH, Rajewsky MF. pH in human tumor xenografts; effects of intravenous administration of glucose. Br J Cancer. 1993;68:492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wagner PD, Wagner HE, Groves BM, Cymerman A, Houston CS. Hemoglobin P(50) during a simulated assent of Mt Everest, operation Everest II. High Alt Med Biol. 2007;8:32–42.

    Article  CAS  PubMed  Google Scholar 

  154. Wang J, Harrison-Shostak DC, Lemasters JJ, Herman B. Contribution of pH-dependent group II phospholipase A2 to chemical hypoxic injury in rat hepatocytes. FASEB J. 1996;10:1319–25.

    CAS  PubMed  Google Scholar 

  155. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res. 2006;98:1528–37.

    Article  CAS  PubMed  Google Scholar 

  156. Wang YF, Fan ZK, Cao Y, Yu DS, Zhang YQ, Wang YS. 2-methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury. Brain Res. 2011;1370:220–6.

    Article  CAS  PubMed  Google Scholar 

  157. Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Siriani AC, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and neuroprotective in experimental models of ischemic injury. Stroke. 2009;40:1877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang Z, Su F, Bruhn A, Yang X, Vincent JL. Acute hypercapnia improves indices of tissue oxygenation more than dobutamine in septic shock. Am J Respir Crit Care Med. 2008;177:178–83.

    Article  CAS  PubMed  Google Scholar 

  159. Warburg O. The metabolism of tumors. London: Arnold Constable; 1930.

    Google Scholar 

  160. Wilkerson DP, Campbell IT, Blackwell JR, Berger NJ, Jones AM. Influence of dichloroacetate on pulmonary gas exchange and ventilation during incremental exercise in healthy humans. Respir Physiol Neurobiol. 2009;168:224–9.

    Article  CAS  PubMed  Google Scholar 

  161. Willam C, Warnecke C, Schefold JC, Kügler J, Koehne P, Frei U, Wiesener M, Eckardt KU. Inconsistent effects of acidosis on HIF-alpha protein and its target genes. Pflugers Arch. 2006;451:534–43.

    Article  CAS  PubMed  Google Scholar 

  162. Winum JY, Scozzafava A, Montero JL, Supuran CT. Inhibition of carbonic anhydrase IX: a new strategy against cancer. Anticancer Agents Med Chem. 2009;9:693–702.

    Article  CAS  PubMed  Google Scholar 

  163. Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor -associated carbonic anhydrases. Cancer Res. 2000;60:7075–83.

    CAS  PubMed  Google Scholar 

  164. Xiang Y, Ma B, Yu HM, Li ZJ. Acetazolamide suppresses tumor metastasis and related protein expression in mice bearing Lewis lung carcinoma. Acta Pharmacol Sin. 2002;23:745–51.

    CAS  PubMed  Google Scholar 

  165. Xu J, Peng Z, Li R, Dou T, Xu W, Gu G, et al. Normoxic induction of cerebral HIF-1alpha by acetazolamide in rats: role of acidosis. Neurosci Lett. 2009;451:274–8.

    Article  CAS  PubMed  Google Scholar 

  166. Xu L, Glassford AJ, Garcia AJ, Giffard RG. Acidosis reduces neuronal apoptosis. Neuroreport. 1998;9:875–9.

    Article  CAS  PubMed  Google Scholar 

  167. Zager RA, Schimp BA, Gmur DJ. Physiological pH: effects on posthypoxic proximal tubular injury. Circ Res. 1993;72:837–46.

    Article  CAS  PubMed  Google Scholar 

  168. Zatovicova M, Jelenska L, Hulikova A, Csaderova L, Ditte Z, Ditte P, Goliasova T, Pastorek J, Pastorekova S. Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr Pharm Des. 2010;16:3255–63.

    Article  CAS  PubMed  Google Scholar 

  169. Zavadova Z, Zavada J. Carbonic anhydrase IX (CA IX) mediates tumor cell interactions with microenvironment. Oncol Rep. 2005;13:977–82.

    CAS  PubMed  Google Scholar 

  170. Zheng W, Kuhlicke J, Jäckel K, Eltzschig HK, Singh A, Sjöblom M, et al. Hypoxia inducible factor-1 (HIF-1)-mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium. FASEB J. 2009;23:204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhou G, Dada LA, Sznajder JI. Regulation of alveolar epithelial function by hypoxia. Eur Respir J. 2008;31:1107–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik R. Swenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swenson, E.R. (2016). Hypoxia and Its Acid–Base Consequences: From Mountains to Malignancy. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_21

Download citation

Publish with us

Policies and ethics