Skip to main content

Testing Efficacy of Natural Anxiolytic Compounds

  • Conference paper
Complementary and Alternative Approaches to Biomedicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 546))

Abstract

Anxiety disorders are a group of mental disorders that range in their severity from occasional, brief episodes of relatively benign nervous tension to severe, recurrent and disabling panic attacks that interfere with activities of daily living. In addition to the suffering of the affected individual, anxiety disorders have larger social and economic ramifications, such as loss of workplace productivity.1 Treatment approaches to anxiety disorders include psychoanalytic, cognitive, and pharmacologic therapies. At present, state of the art Western medical therapies for anxiety rely heavily on anxiolytic (anti-anxiety) pharmaceuticals, some of which have sedative and cognitive side effects. Since the 1960’s, when the prototypic anxiolytic drug diazepam (valium) was discovered serendipitously by L. Sternbach and E. Reeder2, antianxiety drugs have undergone refinement with the goal of reducing undesirable sedative and amnestic side effects. Advances in the fields of neurobiology and psychology have yielded insights into the neurotransmitter systems involved in fear and anxiety responses that have facilitated the development of more selective anxiolytic drugs.3–5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Lepine, The epidemiology of anxiety disorders: prevalence and societal costs. J Clin Psychiatry, 2002.63(Suppl 14): p. 4–8.

    PubMed  Google Scholar 

  2. L. Sternbach, et al., Quinazolines and 1,4-benzodiazepines. XXV. Structure-activity relationships of aminoalkyl-subsituted 1,4-benzodiazepin-2-ones. J Med Chem, 1965.8(6): p. 815–821.

    Article  PubMed  CAS  Google Scholar 

  3. P. Sah, et al., The amygdaloid complex: anatomy and physiology. Physiol Rev, 2003.83(3): p. 803–834.

    PubMed  CAS  Google Scholar 

  4. A. Shekhar, L. Sims, and R. Bowsher, GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. II. Physiological measures. Brain Res, 1993.627(1): p. 17–24.

    Article  PubMed  CAS  Google Scholar 

  5. A. Shekhar and J. Katner, Dorsomedial hypothalamic GABA regulates anxiety in the social interaction test. Pharmacol Biochem Behav, 1995.50(2): p. 253–258.

    Article  PubMed  CAS  Google Scholar 

  6. E. Ernst, Safety concerns about kava. Lancet, 2002.359(9320): p. 1865.

    Article  PubMed  CAS  Google Scholar 

  7. M.B. First, Diagnostic and Statistical Manual-Text Revision (DSM-IV-TR TM , 2000). 2000, Washington, D.C.: American Psychiatric Association.

    Google Scholar 

  8. S. Lee, Socio-cultural and global health perspectives for the development of future psychiatric diagnostic systems. Psychopathology. 2002 Mar-Jun; 35(2–3):152–7., 2002. 35((2–3)): p. 152–157.

    Article  PubMed  Google Scholar 

  9. L. Y, The burden of depression and anxiety in general medicine. J Clin Psychiatry, 2001.62(8): p. 4–9.

    Google Scholar 

  10. J. Chen, L. Reich, and H. Chung, Anxiety disorders. West J Med, 2002.176(4): p. 249–253.

    PubMed  Google Scholar 

  11. E. De Souza, Neuroendocrine effects of benzodiazepines. J Psychiatr Res, 1990.24(Suppl 2): p. 111–119.

    Article  PubMed  Google Scholar 

  12. R. Lydiard, The role of GABA in anxiety disorders. J Clin Psychiatry, 2003.64(Suppl 3): p. 21–27.

    PubMed  CAS  Google Scholar 

  13. P. Dodd, Excited to death: different ways to lose your neurones. Biogerontology, 2002. 3(1–2): p. 51–56.

    Article  PubMed  CAS  Google Scholar 

  14. P. Whiting, et al., Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann N YAcad Sci, 1999.868: p. 645–653.

    Article  CAS  Google Scholar 

  15. D. Pritchett, H. Luddens, and P. Seeburg, Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science. 1989 Sep 22;245(4924):1389–92, 1989.245(4924): p. 1389–1392.

    Article  PubMed  CAS  Google Scholar 

  16. G. Smith and R. Olsen, Functional domains of GABAA receptors. Trends Pharmacol Sci, 1995.16(5): p. 162–168.

    Article  PubMed  CAS  Google Scholar 

  17. R. McKernan and P. Whiting, Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci, 1996.19(4): p. 139–143.

    Article  PubMed  CAS  Google Scholar 

  18. E. Korpi, et al., GABA(A)-receptor subtypes: clinical efficacy and selectivity of benzodiazepine site ligands. Ann Med., 1997.29(4): p. 275–282.

    Article  PubMed  CAS  Google Scholar 

  19. S. Stahl, Selective actions on sleep or anxiety by exploiting GABA-A/benzodiazepine receptor subtypes. J Clin Psychiatry, 2002.63(3): p. 179–180.

    Article  PubMed  Google Scholar 

  20. J. Atack, Anxioselective Compounds Acting at the GABAA Receptor Benzodiazepine Binding Site. Curr Drug Target CNS Neurol Disord, 2003.2(4): p. 213–232.

    Article  CAS  Google Scholar 

  21. G. Griebel, et al., SL651498: an anxioselective compound with functional selectivity for alpha2- and alpha3-containing gamma-aminobutyric acid(A) (GABA(A)) receptors. J Pharmacol Exp Ther, 2001.298(2): p. 753–768.

    PubMed  CAS  Google Scholar 

  22. J. Crawley and F. Goodwin, Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav, 1980.13(2): p. 167–170.

    Article  PubMed  CAS  Google Scholar 

  23. R. Young and D. Johnson, A fully automated light/dark apparatus useful for comparing anxiolytic agents. Pharmacol Biochem Behav, 1991.40(4): p. 739–743.

    Article  PubMed  CAS  Google Scholar 

  24. E. Lepicard, et al., Differences in anxiety-related behavior and response to diazepam in BALB/cByJ and C57BL/6J strains of mice. Pharmacol Biochem Behav, 2000.67(4): p. 739–748.

    Article  PubMed  CAS  Google Scholar 

  25. S. Pellow, et al., Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods, 1985.14(3): p. 149–167.

    Article  PubMed  CAS  Google Scholar 

  26. J. Simiand, P. Keane, and M. Morre, The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology, 1984.84(1): p. 48–53.

    Article  PubMed  CAS  Google Scholar 

  27. L. Steru, et al., Comparing benzodiazepines using the staircase test in mice. Neurosci Biobehav Rev, 1985.9: p. 45–54.

    Article  Google Scholar 

  28. S. File, What can be learned from the effects of benzodiazepines on exploratory behavior? Neurosci Biobehav Rev, 1985.9: p. 45–54.

    Article  PubMed  CAS  Google Scholar 

  29. R. Soulimani, et al., Behavioral effects of passiflora incarnata and its indole alkaloid and flavenoid derivatives and maltol in the mouse. J. Ethnopharmacol, 1997.57: p. 11–20.

    Article  PubMed  CAS  Google Scholar 

  30. S. Akhondzadeh, et al., Passionflower in the treatment of opiates withdrawal: a double-blind randomized controlled trial. J Clinical Pharmacy and Therapeutics, 2001.26: p. 369–373.

    Article  CAS  Google Scholar 

  31. T. Field, D. Lee, and N. Holbrook, Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol, 2001. 127: p. 566–574.

    Article  CAS  Google Scholar 

  32. B. Winkel-Shirley, Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002.5: p. 218–223.

    Article  PubMed  CAS  Google Scholar 

  33. H. Ha, et al., Quercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures. Biol Pharm Bull, 2003.26(4): p. 544–546.

    Article  PubMed  CAS  Google Scholar 

  34. a.M.A. Speroni E, Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med, 1988.54: p. 488–491.

    Article  PubMed  CAS  Google Scholar 

  35. C.S. Picq M, Prigent AF, Effect of two flavonoid compounds on central nervous system. Analgesic activity. Life Sci, 1991.49(26): p. 1979–1988.

    Article  PubMed  CAS  Google Scholar 

  36. J. Medina, et al., Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol, 1990.40(10): p. 2227–2231.

    Article  PubMed  CAS  Google Scholar 

  37. E. Nogueira and V. Vassilieff, Hypnotic, anticonvulsant and muscle relaxant effects of Rubus brasiliensis. Involvement of GABA(A)-system. J Ethnopharmacol, 2000.70(3): p. 275–280.

    Article  PubMed  CAS  Google Scholar 

  38. A. Paladini, et al., Flavonoids and the central nervous system: from forgotten factors to potent anxiolytic compounds. J Pharm Pharmacol, 1999.51(5): p. 519–526.

    Article  PubMed  CAS  Google Scholar 

  39. M. Marder and A. Paladini, GABA(A)-receptor ligands of flavonoid structure. Curr Top Med Chem, 2002.2(8): p. 853–867.

    Article  PubMed  CAS  Google Scholar 

  40. C. Wolfman, et al., Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav, 1994.47(1): p. 1–4.

    Article  PubMed  CAS  Google Scholar 

  41. J. Medina, et al., Overview-flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res, 1997.22(4): p. 419–425.

    Article  PubMed  CAS  Google Scholar 

  42. R.F. Petry RD, de-Paris F, Gosmann G, Salgueiro JB, Quevedo J, Kapczinski F, Ortega GG, Schenkel EP, Comparative pharmacological study of hydroethanol extracts of Passiflora alata and Passiflora edulis leaves. Phytother Res, 2001.15(2): p. 162–164.

    Article  PubMed  CAS  Google Scholar 

  43. K. Dhawan, S. Kumar, and A. Sharma, Comparative anxiolytic activity profile of various preparations of Passiflora incarnata linneaus: a comment on medicinal plants’ standardization. J Altern Complement Med, 2002.8(3): p. 283–291.

    Article  PubMed  Google Scholar 

  44. K. Dhawan, S. Kumar, and A. Sharma, Anxiolytic activity of aerial and underground parts of Passiflora incarnata. Fitoterapia, 2001.72(8): p. 922–926.

    Article  PubMed  CAS  Google Scholar 

  45. D. Loew and M. Kaszkin, Approaching the problem of bioequivalence of herbal medicinal products. Phytotherapy research, 2002.16: p. 705–711.

    Article  PubMed  CAS  Google Scholar 

  46. K. Hui, X. Wang, and H. Xue, Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med.2000 Feb;66(1): 91–3, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. J. Goutman, et al., Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. Eur J Pharmacol, 2003. 461((2–3)): p. 79–87.

    Article  PubMed  CAS  Google Scholar 

  48. K. Hui, et al., Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol, 2002.64(9): p. 1415–1424.

    Article  PubMed  CAS  Google Scholar 

  49. H. Viola, et al., 6-Chloro-3′-nitroflavone is a potent ligand for the benzodiazepine binding site of the GABA(A) receptor devoid of intrinsic activity. Pharmacol Biochem Behav, 2000.65(2): p. 313–320.

    Article  PubMed  CAS  Google Scholar 

  50. M. Huen, et al., 5,7-Dihydroxy-6-methoxyflavone, a benzodiazepine site ligand isolated from Scutellaria baicalensis Georgi, with selective antagonistic properties. Biochem Pharmacol, 2003.66(1): p. 125–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Roberts, A.A. (2004). Testing Efficacy of Natural Anxiolytic Compounds. In: Cooper, E.L., Yamaguchi, N. (eds) Complementary and Alternative Approaches to Biomedicine. Advances in Experimental Medicine and Biology, vol 546. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4820-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4820-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3441-3

  • Online ISBN: 978-1-4757-4820-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics