Skip to main content

Stochastic Modeling of Extinction in Plant Populations

  • Chapter

Abstract

Population viability analyses (predicting the future of small populations) have developed concepts relating largely to genetic threats, although environmental and demographic factors may be of greater immediate concern. Using twenty-eight published empirically derived projection matrices of various perennial herbs and trees, I model the behavior of plant populations by introducing temporal variation (stochasticity) in demographic parameters (mortality, growth, reproductive status, and reproductive output) into matrix projections of stage-structured populations. Stochastic modeling of population behavior allows estimation of extinction probabilities and minimum viable population.

Demographic stochasticity (DS) generates little variation in population dynamics. In contrast, moderate environmental stochasticity (ES) causes extinction risk for many populations with positive population growth under deterministic conditions. Increased ES causes increased extinction probabilities, decreased population sizes, decreased average time until extinction, and increased percentage of years with negative growth. Sensitivity to ES is greatest for populations with low finite rates of increase. Variation in mortality and growth among stages is far more important than variation in reproductive output. Simulation results generally agree with mathematical theory.

Using these analyses, I define a demographic version of minimum viable population (MVP) based on life history, degree of variation due to ES or DS, and acceptable levels of extinction probability over defined time intervals. Moderate ES may set higher MVPs than those necessary to counter short-term genetic effects of small population size. This technique could be extremely useful in conservation biology (e.g., managing endangered populations and preserve design) if data were available on temporal variation in demographic parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Antonovics, J. 1968. Evolution in closely adjacent plant populations. 1. Evolution of self-fertility. Heredity 23: 219–37.

    Article  Google Scholar 

  • Bierzychudek, P. 1982. The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecol Monogr. 52: 335–51.

    Article  Google Scholar 

  • Bradshaw, M.E. 1981. Monitoring grassland plants in Upper Teesdale, England. In The biological aspects of rare plant conservation, ed. H. Synge, 495–514. Chichester: John Wiley and Sons.

    Google Scholar 

  • Bradshaw, M.E., J.P. Doody. 1978. Plant population studies and their relevance to nature conservation. Biol Cons. 14: 223–42.

    Article  Google Scholar 

  • Braumann, C.A. 1981. Population adaptation to a “noisy” environment: Stochastic analogs of some deterministic models. In Quantitative population dynamics, ed. D.G. Chapman & V.F. Gallucci, 39–59. Farland, Md.: International Cooperative.

    Google Scholar 

  • Burns, B.R., J. Ogden. 1985. The demography of the temperate mangrove [Avicennia marina (Forsk.) Vierh.] at its southern limit in New Zealand. Aust. J. Ecol. 10: 125–33.

    Article  Google Scholar 

  • Caswell, H. 1982a. Optimal life histories and the maximization of reproductive value: A general theorem for complex life cycles. Ecology 63: 1218–22.

    Article  Google Scholar 

  • Caswell, H. 1982b. Stable population structure and reproductive value for populations with complex life cycles. Ecology 63: 1223–31.

    Article  Google Scholar 

  • Caswell, H. 1983. Phenotypic plasticity in life history traits: Demographic effects and evolutionary consequences. Am. Zool. 23: 35–46.

    Google Scholar 

  • Caswell, H., P. Werner. 1978. Transient behavior and life history analysis of teasel (Dipsacus sylvestris Huds.). Ecology 59: 53–66.

    Article  Google Scholar 

  • Cohen, J.E. 1979a. Comparative statics and stochastic dynamics of age-structured populations. Theor. Pop. Biol. 16: 159–71.

    Article  Google Scholar 

  • Cohen, J.E. 1979b. Long-run growth rates of discrete multiplicative processes in Markovian environments. J. Math. Anal. Appl. 69: 243–51.

    Article  Google Scholar 

  • Davy, A.J., R.L. Jefferies. 1981. Approaches to the monitoring of rare plant populations. In The biological aspects of rare plant conservation, ed. H. Synge, 219–32. Chichester: John Wiley and Sons.

    Google Scholar 

  • Enright, N.J. 1982. The ecology of Araucaria species in New Guinea. III. Population dynamics of sample stands. Aust. J. Ecol. 7: 227–37.

    Article  Google Scholar 

  • Enright, N.J., J. Ogden. 1979. Applications of transition matrix models in forest dynamics: Araucaria in Papau New Guinea and Nothofagus in New Zealand. Aust. J. Ecol. 4: 3–23.

    Article  Google Scholar 

  • Fiedler, P.L. 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). J. Ecol. 75: 977–95.

    Article  Google Scholar 

  • Flipse, E., E.J.M. Veling. 1984. An application of the Leslie matrix model to the population dynamics of the hooded seal, Cystophora cristata Erxleben. Ecol. Model. 24: 43–59.

    Article  Google Scholar 

  • Frankel, O.H., M.E. Soule. 1981. Conservation and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Franklin, I.R. 1980. Evolutionary change in small populations. In Conservation biology: An evolutionary-ecological perspective, ed. M.E. Soule and B.A. Wilcox, 134–50. Sunderland, Mass: Sinauer.

    Google Scholar 

  • Ginzburg, L.R., Slobodkin, L.B., Johnson, K., Bindman, A.G. 1982. Quasiextinction probabilities as a measure of impact on growth. Risk Anal. 2: 171–81.

    Article  Google Scholar 

  • Goodman, D. 1967. On the reconciliation of mathematical theories of population growth. J. Royal Statist. Soc., Series A 130: 541–53.

    Google Scholar 

  • Goodman, D. 1980. Demographic intervention for closely managed populations. In Conservation biology: An evolutionary-ecological perspective, ed. M.E. Soule and B.A. Wilcox, 171–95. Sunderland, Mass: Sinauer.

    Google Scholar 

  • Goodman, D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119: 802–23.

    Article  Google Scholar 

  • Goodman, D. 1984. Risk spreading as an adaptive strategy in iteroparous life histories. Theor. Popul. Biol. 25: 1–20.

    Article  Google Scholar 

  • Goodman, D. 1984. The demography of chance extinction. In Viable populations for conservation, ed. M.E. Soule, 11–34. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gross, K.L. 1981. Predictions of fate from rosette size in four “biennial” plant species: Verbascum thapsus, Oenothera biennis, Daucus carota, and Tragopogon dubious. Oecologia 48: 209–13.

    Article  Google Scholar 

  • Hamrick, J.L. 1982. Plant population genetics and evolution. Am. J. Bot. 69: 1685–93.

    Article  Google Scholar 

  • Hamrick, J.L., Y.B. Linhart, J.B. Mitton. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst. 10: 173–200.

    Article  Google Scholar 

  • Hartshorn, G.L. 1975. A matrix model of tree population dynamics. In Tropical ecological systems: Trends in terrestrial and aquatic research, ed. F.B. Golley and E. Medina, 45–51. New York: Springer-Verlag.

    Google Scholar 

  • Hastings, A., H. Caswell. 1979. Role of environmental variability in the evolution of life history strategies. Proc. Nat. Acad. Sci. 76: 4700–03.

    Article  Google Scholar 

  • Hubbell, S.P., Werner, P.A. 1979. On measuring the intrinsic rate of increase of populations with heterogeneous life histories. Am. Nat. 113: 277–93.

    Article  Google Scholar 

  • Jain, S.K. 1976. The evolution of inbreeding in plants. Ann. Rev. Ecol. Syst. 7: 469–95.

    Article  Google Scholar 

  • Kachi, N., Hirose, T. 1985. Population dynamics of Oenothera glazioviana in a sand-dune system with special reference to the adaptive significance of size-dependent reproduction. J. Ecol. 73: 887–901.

    Article  Google Scholar 

  • Karron, J.D. 1987a. The pollination ecology of co-occurring geographically restricted and widespread species of Astragalus (Fabaceae). Biol Cons. 39: 179–93.

    Article  Google Scholar 

  • Karron, J.D. 1987b. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evol. Ecol 1: 47–58.

    Article  Google Scholar 

  • Keiding, N. 1975. Extinction and exponential growth in random environments. Theor. Popul. Biol. 8: 49–63.

    Article  Google Scholar 

  • Keyfitz, N. 1968. Introduction to the mathematics of populations. Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Klemow, K.M., Raynal, D.J. 1981. Population ecology of Melilotus alba in a limestone quarry. J. Ecol 69: 33–44.

    Article  Google Scholar 

  • Knight, R.R., Eberhardt, L.L. 1985. Population dynamics of Yellowstone grizzly bears. Ecology 66: 323–34.

    Article  Google Scholar 

  • Lacey, E.P. 1986. Onset of reproduction in plants: Size- versus age-dependency. Trends Ecol Evol. 1: 72–75.

    Article  Google Scholar 

  • Law, R. 1983. A model for the dynamics of a plant population containing individuals classified by age and size. Ecology 64: 224–30.

    Article  Google Scholar 

  • Ledig, F.T., Conkle, M.T. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex carr.). Evolution 7: 79–86.

    Article  Google Scholar 

  • Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1–18.

    Article  Google Scholar 

  • Leigh, E.G., Jr. 1981. The average lifetime of a population in a varying environment. J. Theor. Biol. 90: 213–39.

    Article  Google Scholar 

  • Leslie, P.H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183–212.

    Article  Google Scholar 

  • Levin, D.A. 1981. Dispersal versus gene flow in plants. Ann. Missouri Bot. Gard. 68: 233–53.

    Article  Google Scholar 

  • Levin, D.A. 1984. Genetic variation and divergence of a disjunct Phlox. Evolution 38: 223–25.

    Article  Google Scholar 

  • Lewis, E.G. 1942. On the generation and growth of a population. Sankhya 6: 93–96.

    Google Scholar 

  • Lewontin, R.L., Cohen, D. 1969. On population growth in a randomly varying environment. Proc. Nat. Acad. Sci. 62: 1056–60.

    Article  Google Scholar 

  • Linhart, Y.B. 1974. Intra-population differentiation in annual plants. I. Veronica peregrina L. raised under non-competitive conditions. Evolution 28: 232–43.

    Article  Google Scholar 

  • Loveless, M.P., Hamrick, J.L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–95.

    Article  Google Scholar 

  • May, R.M. 1973. Stability and complexity of model ecosystems. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Mason, H.L., Langenheim, J.H. 1957. Language analysis and the concept environment. Ecology 38: 325–40.

    Article  Google Scholar 

  • Meagher, T.R. 1986. Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most likely male parents. Am. Nat. 128: 199–212.

    Article  Google Scholar 

  • Meagher, T.R., Antonovics, J., Primack, R. 1978. Experimental ecological genetics in Plantago. III. Genetic variation and demography in relation to survival of Plantago cordata, a rare species. Biol. Cons. 14: 243–57.

    Article  Google Scholar 

  • Menges, E. 1990. Population viability analysis for an endangered plant. Cons. Biol. 4: 41–62.

    Article  Google Scholar 

  • O’Brien, S.J., Roelke, M.L., Marker, L., Newman, A., Winkler, C.A., Meitzer, D., Colly, D., Evermann, J.F., Bush, M., Wildt, D.A. 1985. Genetic basis for species vulnerability in the cheetah. Science 227: 1428–34.

    Article  Google Scholar 

  • Park, Y.S., Fowler, D.P., Coles, J.F. 1984. Population studies of white spruce. II. Natural inbreeding and relatedness among neighboring trees. Can. J. For. Res. 14: 909–13.

    Article  Google Scholar 

  • Pinero, D., Martinez-Ramos, M., Sarukhan, J. 1984. A population model of Astrocaryum mexicanum and a sensitivity analysis of its finite rate of increase. Ecol. 72: 977–91.

    Article  Google Scholar 

  • Pollard, J.H. 1966. On the use of the direct matrix product in analyzing certain stochastic population models. Biometrika 53: 397–415.

    Google Scholar 

  • Prentice, H.C. 1984. Enzyme polymorphism, morphometric variation and population structure in the restricted endemic, Silene diclinis (Caryophyllaceae). Biol. J. Linn. Soc. 22: 125–43.

    Article  Google Scholar 

  • Rai, K.N., Jain, S.K. 1982. Population biology of Avena. IX. Gene flow and neighborhood size in relation to microgeographic variation in Avena barbata. Oecologia 53: 299–305.

    Article  Google Scholar 

  • Richter-Dyn, N., Goel, N.S. 1972. On the extinction of colonizing species. Theor. Popul. Biol. 3: 406–33.

    Article  Google Scholar 

  • Roughgarden, J. 1979. Theory of population genetics and evolutionary ecology: An introduction. New York: Macmillan.

    Google Scholar 

  • Schonewald-Cox, C.M., Chambers, S.M., MacBryde, B., Thomas, W.L. 1983. Genetics and conservation. Menlo Park, Calif.: Benjamin/Cummings.

    Google Scholar 

  • Shaffer, M.L. 1981. Minimum population sizes for species conservation. Bio- Science 31: 131–34.

    Google Scholar 

  • Shaffer, M.L. 1987. Minimum viable populations: Coping with uncertainty. In Viable populations for conservation, ed. M.E. Soulé, 69–86. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Shaffer, M.L., Samson, F.B. 1985. Population size and extinction: A note on determining critical population sizes. Am. Nat. 125: 144–52.

    Article  Google Scholar 

  • Shaw, R.G. 1987. Density-dependence in Salvia lyrata: Experimental alteration of densities of established plants. J. Ecol. 75: 1049–63.

    Article  Google Scholar 

  • Silander, J.A. 1983. Demographic variation in the Australian desert cassia under grazing pressure. Oecologia 60: 227–33.

    Article  Google Scholar 

  • Silander, J.A. 1985. The genetic basis of the ecological amplitude of Spartina patens. II. Variance and correlation analysis. Evolution 39: 1034–52.

    Article  Google Scholar 

  • Slade, N.A., Levenson, H. 1984. The effect of skewed distributions on vital statistics on growth of age-structured populations. Theor. Popul. Biol. 26: 361–66.

    Article  Google Scholar 

  • Soulé, M.E., ed. 1986. Conservation biology. The science of scarcity and diversity. Sunderland, Mass.: Sinauer. ed. 1987. Viable populations for conservation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Strebel, D.E. 1985. Environmental fluctuations and extinction in single species. Theor. Popul Biol. 27: 1–26.

    Article  Google Scholar 

  • Sykes, Z.M. 1969. Some stochastic versions of the matrix model for population dynamics. Am. Stat. Assoc. J. 64: 111–30.

    Article  Google Scholar 

  • Tuljapurkar, S.D., Orzack, S.H. 1980. Population dynamics in variable environments. I. Long-run growth rates and extinction. Theor. Popul. Biol. 18: 314–42.

    Article  Google Scholar 

  • Vaughan, D.S. 1981. An age structure model of yellow perch in western Lake Erie. In Quantitative population dynamics, ed. D.G. Chapman and V.F. Gallucci, 189–216. Fairland, Md.: International Cooperative.

    Google Scholar 

  • Waite, S. 1984. Changes in the demography of Plantago coronopus at two coastal sites. J. Ecol. 72: 809–26.

    Article  Google Scholar 

  • Waller, D.M., O’Malley, D.M., Gawler, S.C. 1988. Genetic variation in the extreme endemic Pedicularis furbishiae. Cons. Biol. 1: 335–40.

    Article  Google Scholar 

  • Wells, T.C.E. 1981. Population ecology of terrestrial orchids. In Biological aspects of rare plant conservation, ed. H. Synge, 281–96. Chichester: John Wiley and Sons.

    Google Scholar 

  • Werner, P.A., Caswell, H. 1977. Population growth rates and age vs. size distribution models for teasel (Dipsacus silvestris Huds.). Ecology 58: 1103–11.

    Article  Google Scholar 

  • Wethey, D.S. 1985. Castastrophe, extinction, and species diversity: A rocky intertidal example. Ecology 66: 445–56.

    Article  Google Scholar 

  • White, P.S., Bratton, S.P. 1980. After preservation: Philosophical and practical problems of change. Biol. Cons. 18: 241–55.

    Article  Google Scholar 

  • Wilcox, B.A. 1986. Extinction models and conservation. Trends Ecol. Evol. 1: 46–48.

    Article  Google Scholar 

  • Wilcox, B.A., Murphy, D.D. 1985. Conservation strategy: the effects of fragmentation on extinction. Am. Nat. 125: 879–87.

    Article  Google Scholar 

  • Wright, S.J., Hubbell, S.P. 1983. Stochastic extinction and reserve size: A focal species approach. Oikos 41: 466–77.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Routledge, Chapman & Hall, Inc. and Diane C. Fiedler

About this chapter

Cite this chapter

Menges, E.S. (1992). Stochastic Modeling of Extinction in Plant Populations. In: Fiedler, P.L., Jain, S.K. (eds) Conservation Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6426-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6426-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6428-3

  • Online ISBN: 978-1-4684-6426-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics