Skip to main content

Effect of Solute on Ice-Solution Interfacial Free Energy; Calculation from Measured Homogeneous Nucleation Temperatures

  • Conference paper

Abstract

Among the forms of the water polymer interface of interest to low temperature scientists one distinguishes in particular the common surfaces separating ice from solid polymer and ice from aqueous polymer solution. The ice — solid polymer interface has been the subject of considerable attention; it was, for example, discussed at the Sapporo Conference on the Physics of Snow and Ice in 1966 /1/ and was the subject of a symposium chaired by Dr. H. H. G. Jellinek in 1967 /2/. Studies on the ice — aqueous solution interface have, in contrast, been limited largely to the interpretation of growth rate measurements in dilute salt solutions /3/, where the physical characteristics of the solution dominate the contribution from the surface effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oura, Hirobumi, Ed. Physics of Snow and Ice, (The Institute of Low Temperature Science, Hokkaido University) (1967).

    Google Scholar 

  2. Jellinek, H.H.G., Chmn, “Ice Symposium,” J. Coll. Interface Sci. 25, 131–294 (1967).

    Article  Google Scholar 

  3. Pruppacher, H. R., J. Coll. Interface Sci. 25, 285–294 (1967).

    Article  CAS  Google Scholar 

  4. Hobbs, P. V. and Ketcham, W. H., In Physics of Ice, Eds. Riehl, N., Bullemer, B. and Engelhardt, H. (Plenum Press, New York) 95–112 (1969).

    Google Scholar 

  5. Hardy, S. C. and Coriell, S. R., J. Crystal Growth 7, 147–154 (1970).

    Article  CAS  Google Scholar 

  6. Fletcher, N. H., The Chemical Physics of Ice, (Cambridge University Press, London) (1970).

    Book  Google Scholar 

  7. Dufour, L. and Defay, R., Thermodynamics of Clouds, (Academic Press, New York) (1963).

    Google Scholar 

  8. Hillig, W. B., in Growth and Perfection of Crystals, Eds. Doremus, R. H., Roberts, B. W., and Turnbull, D. (John Wiley and Sons, New York) 350–360 (1958).

    Google Scholar 

  9. Kotier, G. and Tarshis, L. A., J. Crystal Growth 3–4, 603–610 (1968).

    Google Scholar 

  10. Schaefer, V. J., Ind. Eng. Chem. 44, 1300–1304 (1952).

    Article  CAS  Google Scholar 

  11. Vonnegut, B., J. Colloid Sci. 33, 563–569 (1948).

    Article  Google Scholar 

  12. Turnbull, D. and Vonnegut, B., Ind. Eng. Chem. 44, 1292–1297 (1952).

    Article  CAS  Google Scholar 

  13. Volmer, M. and Weber, A., Z. Phys. Chem, 119, 277–301 (1926).

    CAS  Google Scholar 

  14. Becker, R. and Döring, W., Ann. Phys. 24, 719–752 (1935).

    Article  CAS  Google Scholar 

  15. Turnbull, D. and Fisher, J. C., J. Chem, Phys. 17, 71–73 (1949).

    Article  CAS  Google Scholar 

  16. Uhlmann, D. R. and Chalmers, B., in Nucleation Phenomena, Michaels, Alan S. Chmn, (American Chemical Society Publications, Washington, D. C.) 1–15 (1966).

    Google Scholar 

  17. Sundquist, B. E. and Oriani, R. A., J. Chem. Phys., 36, 10, 2604–2615 (1962).

    Article  CAS  Google Scholar 

  18. Turnbull, D., J. Appl. Phys, 21, 1022–1028 (1950).

    Article  CAS  Google Scholar 

  19. Rasmussen, D. and Luyet, B., Biodynamica 11, 33–44 (1970).

    CAS  Google Scholar 

  20. Kuhns, I. E., J. Atmos. Sciences, 25, 878–880 (1968).

    Article  CAS  Google Scholar 

  21. Cormia, R. L., Price, F. P. and Turnbull, D., J. Chem. Phys., 37, 6, 1333–1340 (1962).

    Article  CAS  Google Scholar 

  22. Curme, G. O. and Johnston, F., Glycols, 57, (ACS Monograph, Reinhold Publishing Corp,, New York) (1953).

    Google Scholar 

  23. Rasmussen, D. H. and MacKenzie, A. P., J. Phys. Chem. 75, 967–973, (1971).

    Article  CAS  Google Scholar 

  24. General Aniline and Film Corp., New York, PVP (1964). /25/ MacKenzie, A. P. and Rasmussen, D. H., this volume.

    Google Scholar 

  25. Korson, L., Drost-Hansen, W., and Millero, F. J., J. Phys. Chem. 73, 34–39 (1969).

    Article  CAS  Google Scholar 

  26. Gilra, N. K. and Dass, N., J. Physical Soc. Japan, 24, 4, 910–912 (1968).

    Article  CAS  Google Scholar 

  27. Frenkel, J., Kinetic Theory of Liquids, 382-400 (Oxford at the Clerendon Press) (1946).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this paper

Cite this paper

Rasmussen, D.H., MacKenzie, A.P. (1972). Effect of Solute on Ice-Solution Interfacial Free Energy; Calculation from Measured Homogeneous Nucleation Temperatures. In: Jellinek, H.H.G. (eds) Water Structure at the Water-Polymer Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8681-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8681-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8683-8

  • Online ISBN: 978-1-4615-8681-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics