Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 231))

Abstract

Definition and Classification of Cardiomyopathies Cardiomyopathies are diseases of the heart muscle. When the term was introduced in 1957, it was used to identify a group of myocardial diseases not attributable to coronary artery disease (1). The definition has been modified since then and now refers to structural or functional abnormalities of the myocardium that are not secondary to hypertension, valvular or congenital heart disease, or pulmonary vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brigden W: Uncommon myocardial diseases: Thenoncoronary cardiomyopathies; Lancet 1957;2.1179–1184; 1243-1249.

    Article  Google Scholar 

  2. Richardson P, McKenna WJ, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology: Task force on the definition and classification of cardiomyopathy. Circulation 1996; 93:841–842.

    Article  PubMed  CAS  Google Scholar 

  3. Manolio TA, Baughman KL, Rodenheffer R, et al. Prevalence and etiology of idiopathic dilated cardiomyopathy (Summary of a National Heart Lung and Blood Institute workshop). Am J Cardiol 1992; 69:1458–1466.

    Article  PubMed  CAS  Google Scholar 

  4. Wiles HB, McArthur PD, Taylor AB, et al. Prognostic features of children with idiopathic dilated cardiomyopathy. Am J Cardiol 1991; 68:1372–1376.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman RA, Moak JP, Garson A Jr. Clinical course of idiopathic dilated cardiomyopathy in children. J Am Coll Cardiol 1991; 18:152–156.

    Article  PubMed  CAS  Google Scholar 

  6. Matitiau A, Perez-Atayde A, Sanders SP, et al. Infantile dilated cardiomyopathy: relation of outcome to left ventricular mechanics, hemodynamics and histology at the time of presentation. Circulation 1994; 90:1310–1318.

    Article  PubMed  CAS  Google Scholar 

  7. Baig MK, Goldman JH, Caforio ALP, et al. Familial dilated cardiomyopathy Cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 1998; 31:195–201.

    Article  PubMed  CAS  Google Scholar 

  8. Michels W, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy.N EngI J Med 1992; 326:77–82.

    Article  CAS  Google Scholar 

  9. Grunig E, Tasman JA, Kucherer H, et al. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998; 31:186–194.

    Article  PubMed  CAS  Google Scholar 

  10. Towbin J. Molecular genetic aspects of cardiomyopathy. Biochem Med Metab Biol 1993; 49:285–320.

    Article  PubMed  CAS  Google Scholar 

  11. Towbin JA, Roberts R. Cardiovascular diseases due to genetic abnormalities. In: Alexander RW Schlant RC, Fuster V (eds): Hurst’s The Heart, ed 9. New York, McGraw-Hill, 1998, Chapter 69 pp 1877–1924.

    Google Scholar 

  12. Wallace DC. Mitochondrial genetics: A paradigm for aging and degenerative diseases?Science 1992; 256:628–632.

    Article  PubMed  CAS  Google Scholar 

  13. Gilbert EM, Bristow MR. Idiopathic dilated cardiomyopathy. In: Schlant RC, Alexander RW (eds): Hurst’s The Heart, ed 8. New York, McGraw-Hill, 1994,pp 1609–1619.

    Google Scholar 

  14. Doshi R, Lodge KV: Idiopathic cardiomyopathy in infants. ArchDis Child 1973; 48:431–435, 1973.

    Article  CAS  Google Scholar 

  15. Lewis AB, Neustein HB, Takahashi M, et al. Findings on endomyocardial biopsy in infants and children with dilated cardiomyopathy. Am J Cardiol 1985 55:143–145.

    Article  PubMed  CAS  Google Scholar 

  16. Tazelaar HD, Billingham ME. Leukocytic infiltrates in idiopathic dilated cardiomyopathy: A source of confusion with active myocarditis. Am JSurg Pathol 1986; 10:405–412.

    Article  CAS  Google Scholar 

  17. Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol 1987; 18:619–624.

    Article  PubMed  CAS  Google Scholar 

  18. Greenwood RD, Nadas AS, Fyler DC. The clinical course of primary myocardial disease in infants and children. Am Heart J 1978;92:549–560.

    Article  Google Scholar 

  19. Taliercio CP, Seward JB, Discoll DJ, et al. Idiopathic dilated cardiomyopathy in the young: Clinical profile and natural history.J Am Coll Cardiol 1985; 6:1126–1131.

    Article  PubMed  CAS  Google Scholar 

  20. Griffin ML, Hernandez A, Martin TC, et al. Dilated cardiomyopathy in infants and children. J Am Coll Cardiol 1988;11:39–44.

    Article  Google Scholar 

  21. Mestroni L, Maisch B, McKenna WJ, et al. Guidelines for the study of familial dilated cardiomyopathy. Eur Heart J 1999; 20:93–102.

    Article  PubMed  CAS  Google Scholar 

  22. Ghafour AD, Gutgesell HP. Echocardiographic evaluation of left ventricular function in children with congestive cardiomyopathy. Am J Cardiol 1979;44:1332–1338.

    Article  PubMed  CAS  Google Scholar 

  23. Lewis AB. Prognostic value of echocardiography in children with idiopathic dilated cardiomyopathy. Am Heart J 1994; 128:133–136.

    Article  PubMed  CAS  Google Scholar 

  24. Martin AB, Webber S, Fricker FJ, et al. Acute myocarditis: Rapid diagnosis by PCR in children. Circulation 1994; 90:330–339.

    Article  PubMed  CAS  Google Scholar 

  25. Pauschinger M, Bowles N, Fuentes-Garcia J, et al. Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction, Circulation 1999;99:1348–1354.

    CAS  Google Scholar 

  26. Towbin JA. Polymerase chain reaction and its uses as a diagnostic tool for cardiovascular disease. Trends Cardiovasc Med 1995; 5:175–185.

    Article  PubMed  CAS  Google Scholar 

  27. Kohlschutter A, Hausdorf G. Primary (genetic) cardiomyopathies in infancy: A survey of possible disorders and guidelines for diagnosis. Eur J Pediatr 1986; 145:454–459.

    Article  PubMed  CAS  Google Scholar 

  28. Kelly DP, Strauss AW. Inherited cardiomyopathies. N Engl J Med 1993; 330:913–919.

    Google Scholar 

  29. Roberts WC, Ferrans VJ. Pathologic anatomy of the cardiomyopathies: Idiopathic dilated and hypertrophic types, infiltrative types, and endomyocardial disease with and withouteosinophilia. Hum Pathol 1975; 6:287–342.

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz ML, Cox GF, Lin AE, et al. Clinical approach to genetic cardiomyopathy in children. Circulation 1996; 94:2021–2038.

    Article  PubMed  CAS  Google Scholar 

  31. Fenoglio JJ, Ursell PC, Kellogg CE, et al. Diagnosis and classification of myocarditis by endomyocardial biopsy. N Engl J Med 1983 308:12–15.

    Article  PubMed  Google Scholar 

  32. Strauss AW. Defects of mitochondrial proteins and pediatrie heart disease. Prog Pediatr Cardiol 1996; 6:83–90.

    Article  Google Scholar 

  33. Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy withneutropenia, growth retardation, and 3-methylglutaconicaciduria. J Pediatr 1991; 119:738–747.

    Article  PubMed  CAS  Google Scholar 

  34. Berko BA, Swift M. X-linked dilated cardiomyopathy. N Engl J Med 1987;316:1186–1191.

    Article  PubMed  CAS  Google Scholar 

  35. Towbin JA, Hejtmancik JF, Brink P, et al. X-linked dilated cardiomyopathy: Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 1993; 87:1854–1865.

    Article  PubMed  CAS  Google Scholar 

  36. Towbin JA. Biochemical and molecular characterization of X-linked dilated cardiomyopathy (XLCM). Developmental mechanisms of heart disease. Clark EB, Markwald RR, Takao A (Eds), Futura Publishing Co., Inc., New York, 121–132, 1995.

    Google Scholar 

  37. Muntoni F, Cau M, Canau A, et al. Brief report: Deletion of the dystrophin muscle promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med 1993; 329:921–925.

    Article  PubMed  CAS  Google Scholar 

  38. Milasin J, Muntoni F, Severini CM, et al. A point mutation in the 5’ splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum Mol Genet 1996;5:73–79.

    Article  PubMed  CAS  Google Scholar 

  39. Ortiz-Lopez R, Su J, Goytia V, et al. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy (XLCM). Circulation 1997; 95:2434–2440.

    Article  PubMed  CAS  Google Scholar 

  40. Franz WM, Cremer M, Hermann R, et al. X-linked dilated cardiomyopathy Novel mutation of the dystrophin gene. Ann NY AcadSci 1995; 751:470–491.

    Article  Google Scholar 

  41. Ferlini A, Galie N, Merlini L, et al. A novel Alu-like element rearranged in the dystrophin gene causes a splicing mutation in a family with X-linked dilated cardiomyopathy Am J Hum Genet 1998; 63:436–460.

    CAS  Google Scholar 

  42. Bies RD, Maeda M, Roberds SL, et al. A 5’ dystrophin duplication mutation causes membrane deficiency of α-dystroglycan in a family with X-linked cardiomyopathy. J Mol Cell Cardiol 1997; 29:3175–3188.

    Article  PubMed  CAS  Google Scholar 

  43. Yoshida K, Nakamura A, Yazak M, et al. Insertional mutation by transposable element, L1, in the DMD gene results in X-linked dilated cardiomyopathy. HumMolec Med 1998; 7:1129–1132.

    CAS  Google Scholar 

  44. Koenig M, Hoffman EP, Bertelson CJ, et al. Complete cloning of the Duchenne muscular dystrophy (DMD)cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987, 50:509–517.

    Article  PubMed  CAS  Google Scholar 

  45. Hoffman EP, Brown RJ, Kunkel LM. Dystrophin: the protein products of the Duchenne muscular dystrophy locus. Cell 1987, 51:919–928.

    Article  PubMed  CAS  Google Scholar 

  46. Cox GF, Kunkel LM. Dystrophies and heart disease. Curr Opin Cardiol 1997; 12:329–343.

    Article  PubMed  CAS  Google Scholar 

  47. Melacini P, Fanin M, Danieli GA, et al. Myocardial involvement is very frequent among patients affected with subclinical Becker’s muscular dystrophy. Circulation 1996;94:3168–3175.

    Article  PubMed  CAS  Google Scholar 

  48. Melacini P, Fanin M, Daniel GA, et al. Cardiac involvement in Becker muscular dystrophy. J Am Coll Cardiol 1993; 22:1927–1934.

    Article  PubMed  CAS  Google Scholar 

  49. Ervasti JM, Ohlendieck K, Kahl SD, et al. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 1990;345:315–319.

    Article  PubMed  CAS  Google Scholar 

  50. Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J CellBiol 1993; 122:809–823.

    Article  CAS  Google Scholar 

  51. Ervasti JM, Campbell KP. Membrane organization of the dystrophinglycoprotein complex. Cell 1991;66:1121–1131.

    Article  PubMed  CAS  Google Scholar 

  52. Ozama E, Hagiwara Y, Yoshida M. Creatine kinase cell membrane and Duchenne muscular dystrophy. Mol Cell Biochem 1999; 190:143–151.

    Article  Google Scholar 

  53. Ozawa E, Noguchi S, Mizuno Y, et al. Fromdystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 1998;21:421–438.

    Article  PubMed  CAS  Google Scholar 

  54. Ohlendieck K. Towards an understanding of the dystrophinglycoprotein complex: linkage between the extracellular matrix and the membranecytoskeleton in muscle fibers. Eur J Cell Biol 1996; 69:1–10.

    PubMed  CAS  Google Scholar 

  55. Neustein HD, Lurie PR, Dahms B, Takahashi M. An X-linked recessive cardiomyopathy with abnormal mitochondria. Pediatrics 1979, 64:24–29.

    PubMed  CAS  Google Scholar 

  56. Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leukocytes. JNeurol Sci 1983; 72:327–355.

    Article  Google Scholar 

  57. Bolhuis PA, Hensels GW, Hulsebos TJ, et al. Mapping of the locus for X-linkedcardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth Syndrome) to Xq28. Am J Hum Genet 1991; 48.481–485.

    Google Scholar 

  58. Ades LC, Gedeon AK, Wilson MJ, et al. Barth syndrome: clinical features and confirmation of gene localization to distal Xq28. Am J Med Genet 1993; 45:327–334.

    Article  PubMed  CAS  Google Scholar 

  59. Bione S, D’Adamo P, Maestrini E, et al. A novel X-linked gene G4.5 is responsible forBarth syndrome. Nat Genet 1996; 12:385–389.

    Article  PubMed  CAS  Google Scholar 

  60. Johnston J, Kelley RI, Feigenbaum A, et al. Mutation characterization and genotype-phenotype correlation in Barth syndrome. Am J Hum Genet 1997;61:1053–1058.

    Article  PubMed  CAS  Google Scholar 

  61. D’Adamo P, Fassone L, Gedeon A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 1997; 61:862–867.

    Article  PubMed  Google Scholar 

  62. Bowles KR, Tsubata S, Ortiz-Lopez R, et al. The identification of a G4.5 mutation in a patient with idiopathic dilated cardiomyopathy.Pediatr Res 1998; 43:18A.

    Google Scholar 

  63. Bleyl SB, Mumford BR, Thompson V, et al. Neonatal lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet 1997;61:868–872.

    Article  PubMed  CAS  Google Scholar 

  64. Orstavik KH, Orstavik RE, Naumova AK, et al. X chromosome inactivation carriers of Barth syndrome. Am J Hum Genet 1998;63:1457–1463.

    Article  PubMed  CAS  Google Scholar 

  65. Dusek J, Ostadal B, Duskova M. Postnatal persistence of spongy myocardium with embryonic blood supply. Arch Pathol 1975; 99:312–317.

    PubMed  CAS  Google Scholar 

  66. Jenni R, Goebel N, Tartini R, et al. Persisting myocardial sinusoids of both ventricles as an isolated anomaly: echocardiographic, angiographic, and pathologic anatomical findings. Cardiovasc Intervent Radiol 1986; 9:127–131.

    Article  PubMed  CAS  Google Scholar 

  67. Ichida F, Hamamichi Y, Miyawaki T, et al. Clinical features of isolated noncompaction of the ventricular myocardium. Long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol 1999; 34:233–240.

    Article  PubMed  CAS  Google Scholar 

  68. Durand JB, Bachinski LL, Bieling L, et al. 1995; 92:3387–3389.

    Google Scholar 

  69. Siu BL, Nimura H, Osborne JA, et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 1999; 99:1022–1026.

    Article  PubMed  CAS  Google Scholar 

  70. Li D, Tapscott T, Gonzalez O, et al. Desmin mutations responsible for idiopathic dilated cardiomyopathy. Circulation 1999; 100:461–464.

    Article  PubMed  CAS  Google Scholar 

  71. Krajinovic M, Pinamonti B, Sinagra G, et al. Linkage of familial dilated cardiomyopathy to chromosome 9. Am J Hum Genet 1995; 57:846–852.

    PubMed  CAS  Google Scholar 

  72. Bowles KR, Gajarski R, Porter P, et al. Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10q21–23. J Clin Invest 1996;98:1355.

    Article  PubMed  CAS  Google Scholar 

  73. Olson TM, Michels W, Thibodeau SN, et al. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998;280:750–752.

    Article  PubMed  CAS  Google Scholar 

  74. Towbin JA. The role of a cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 1998; 10:131–139.

    Article  PubMed  CAS  Google Scholar 

  75. Towbin JA, Bowles KR, Bowles NE. Etiologies of cardiomyopathy and heart failure. Evidence for a final common pathway for disorders of the myocardium. Nature Med 1999; 5:266–261.

    Article  PubMed  CAS  Google Scholar 

  76. Towbin JA. Toward an understanding of the cause of mitral valve prolapse. Am J Hum Genet 1999; 65:1238–1241.

    Article  PubMed  CAS  Google Scholar 

  77. Towbin JA, Roberts R. Cardiovascular Diseases Due to Genetic Abnormalities. In: “Hurst’s The Heart.” Alexander RW, Schlant RC, Fuster V, Eds. McGraw-Hill, Inc., Ninth Edition, Chapter 69, pp. 1877–1924,1998.

    Google Scholar 

  78. Mogensen J, Klausen IC, Pedersen AK, et al. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 1999;103:R39–R43.

    Article  PubMed  CAS  Google Scholar 

  79. Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease.Annu Rev Biochem 1994; 63:345–382.

    Article  PubMed  CAS  Google Scholar 

  80. Goldfarb LG, Park KY, Cerenakova L, et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 1998;19:402–403.

    Article  PubMed  CAS  Google Scholar 

  81. Kass S, MacRae C, Graber HL, et al. A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosomelpl-lql. Nat Genet 1994; 7:546–551.

    Article  PubMed  CAS  Google Scholar 

  82. Jung M, Poepping I, Perrot A, et al. Investigation of a family with autosomal dominant dilated cardiomyopathy defines a novel locus on chromosome 2ql4-q22. Am J Hum Genet 1999 65:1068–1077.

    Article  PubMed  CAS  Google Scholar 

  83. Olson TM, Keating MP. Mapping a cardiomyopathy locus to chromosome 3p22-p25. J Clin Invest 1996; 97:528.

    Article  PubMed  CAS  Google Scholar 

  84. Messina DN, Speer MC, Pericak-Vance MA, McNally EM. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am J Hum Genet 1997; 61:909–917.

    Article  PubMed  CAS  Google Scholar 

  85. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of thelamin A/C gene as causes of dilated cardiomyopathy and conduction disease. N Engl J Med 1999; 341:1715–1724.

    Article  PubMed  CAS  Google Scholar 

  86. Bonnemann CG, Modi R, Noguchi S, et al. β-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of thesarcoglycan complex. Nat Genet 1995; 11:266–273.

    Article  PubMed  CAS  Google Scholar 

  87. Lim LE, Duclos F, Broux O, et al. β-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4ql2. Nat Genet 1995;11:257–265.

    Article  PubMed  CAS  Google Scholar 

  88. Nigro V, Moreira ES, Piluso G, et al. The 5q autosomal recessive limb-girdle muscular dystrophy (LGMD2F) is caused by a mutation in the δ-sarcoglycan gene. Nat Genet 1996;14:195–198.

    Article  PubMed  CAS  Google Scholar 

  89. Vainzof M, Passos-Bueno MR, Canovas M, et al. The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum Mol Genet 1990;5:1963–1969.

    Article  Google Scholar 

  90. Noguchi S, McNally EM, Ben Othmane K, et al. Mutations in the dystrophin-associated protein β-sarcoglycan in chromosome 13 muscular dystrophy. Science 1995;270: 819–822.

    Article  PubMed  CAS  Google Scholar 

  91. Araishi K, Sasaoka T, Imamura M, et al. Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in α-sarcoglycan-deficient mice. Hum Mol Genet 1999, 8:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  92. Geisterfer-Lowrance AA, Kass S, Tanigawa C, et al. A α-cardiac myosin heavy chain gene missense mutation Cell 1990;62:999–1006.

    CAS  Google Scholar 

  93. Watkins H, Conner D, Thierfelder LC, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 1995; 11:434–437.

    Article  PubMed  CAS  Google Scholar 

  94. Bonne G, Carrier L, Bercovici J, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet 1995; 11:438–445.

    Article  PubMed  CAS  Google Scholar 

  95. Poetter K, Jiang H, Hassanzadeh S. et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 1996; 13:63–69.

    Article  PubMed  CAS  Google Scholar 

  96. Thierfelder L, Watkins H, MacRae C, et al. α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell 1994; 77:701–712.

    Article  PubMed  Google Scholar 

  97. Kimura A, Harada H, Park JE, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 1997;16:379–389.

    Article  PubMed  CAS  Google Scholar 

  98. Watkins H, Rosenzweig A, Hwang DW, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. NEngI J Med 1992;326:1103.

    Google Scholar 

  99. Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and &$#x03B1;tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995;332:1058–1064.

    Article  PubMed  CAS  Google Scholar 

  100. Nimura H, Bachinski LL, Sangwatanaro JS, et al. Mutations in the gene for cardiac myosin-binding protein C and later onset familial hypertrophic cardiomyopathy. N Engl J Med 1998; 338:1248–1257.

    Article  Google Scholar 

  101. Vincent GM. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu Rev Med 1998; 49:263–274.

    Article  PubMed  CAS  Google Scholar 

  102. Towbin JA, Vatta M, Wang Z, et al. Emerging targets in long QT syndromes and Brugada syndrome. Emerg Therap Targets 1999; 3:423–437.

    Article  CAS  Google Scholar 

  103. Chen Q, Kirsch GE, Zhang D, et al. Genetic Basis and Molecular Mechanisms for Idiopathic Ventricular Fibrillation. Nature 1998;392:293–296.

    Article  PubMed  CAS  Google Scholar 

  104. Maeda M, Holder E, Lowes B, et al. Dilated cardiomyopathy associated with deficiency of the cytoskeletal proteinmetavinculin. Circulation 1997;95:17–20.

    Article  PubMed  CAS  Google Scholar 

  105. Fadic R, Sunada Y, Waclawik AJ, et al. Deficiency of a dystrophin-associated glycoprotein (adhalin) in a patient with muscular dystrophy and cardiomyopathy. N Engl J Med 1996; 334:362–366.

    Article  PubMed  CAS  Google Scholar 

  106. McNally EM, Bonnemann CG, Kunkel LM, et al. Deficiency of adhalin in a patient with muscular dystrophy and cardiomyopathy. N Engl J Med 1996;324:1610–1611.

    Google Scholar 

  107. Ohlendieck K, Matsumura K, Ionasescu VV, et al. Duchenne muscular dystrophy: deficiency of dystrophin-associated proteins in theSarcolemma. Neurology 1993; 43:795–800.

    Article  PubMed  CAS  Google Scholar 

  108. Deconinck AE, Rafael JA, Skinner JA, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997; 90:717–727.

    Article  PubMed  CAS  Google Scholar 

  109. Grady RM, Teng H, Nichol MC, et al. Skeletal and cardiac Myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 1997;90:729–738.

    Article  PubMed  CAS  Google Scholar 

  110. Nigro V, Okazaki Y, Belsito A, et al. Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 6:601–607, 1997.

    Article  PubMed  CAS  Google Scholar 

  111. Sakamoto A, Ono K, Abe M, et al. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associatedglycoprotein complex. Proc Natl Acad Sci USA 1997; 94:13873–13878

    Article  PubMed  CAS  Google Scholar 

  112. Hack AA, Ly CT, Jiang F, et al. δ-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J CellBiol 1998; 142:1279–1287.

    Article  CAS  Google Scholar 

  113. Melacini P, Fanin M, Duggan DJ, et al. Heart involvement in muscular dystrophies due to sarcoglycan gene mutations. Muscle & Nerve 1999; 22:473–477.

    Article  CAS  Google Scholar 

  114. Araishi K, Sasaoka T, Immamma M, et al. Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in α-sarcoglycan-deficient mice. Hum Mol Genet 1999;8:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  115. Arber S, Hunter JJ, Ross J Jr. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997;88:393–403.

    Article  PubMed  CAS  Google Scholar 

  116. Helbling-Leclerc A, Zhang X, Topaloglu H, et al. Mutations in the Iamininα2-chain gene (LAMA2) cause merosine deficient congenital muscular dystrophy. Nat Genet 1995;11:216–218.

    Article  PubMed  CAS  Google Scholar 

  117. McNally EM, Ly CT, Kunkel LM. Human e-sarcoglycan is highly related to α-sarcoglycan (adhalin) the limb girdle muscular dystrophy type 2D gene. FEBSLett 1998;422:27–32.

    Article  CAS  Google Scholar 

  118. Metzinger L, Blake DJ, Squier MV, et al. Dystrobrevin deficiency at the sarcolemma of patients with muscular dystrophy. Hum Mol Genet 1997;6:1185–1191.

    Article  PubMed  CAS  Google Scholar 

  119. Duggan DJ, Gorospe JR, Fanin M, et al. Mutations in the sarcoglycan genes in patients with myopathies. N Engl J Med 1997;336:618–624.

    Article  PubMed  CAS  Google Scholar 

  120. Nogami K, Kusachi S, Nunoyama H, et al. Extracellular matrix components in dilated cardiomyopathy. Immunohistochemical study of endomyocardial biopsy specimens. Jpn Heart J 1996; 37:483–494.

    Article  PubMed  CAS  Google Scholar 

  121. Philpot J, Sewry C, Pennock J, et al. Clinical phenotype in congenital muscular dystrophy: correlation with expression ofmerosin in skeletal muscle. Neuromuscul Disorder 1995; 5:301–305.

    Article  CAS  Google Scholar 

  122. McNally EM, de Sa Moreira E, Duggan DJ, et al. Caveolin-3 in muscular dystrophy. Hum Mol Genet 1998;7:871–877.

    Article  PubMed  CAS  Google Scholar 

  123. Ervasti JM, Campbell KP. A role for the dystrophin-glyprotein complex as a transmembrane linker between laminin and actin. J CellBiol 1993; 122:809–823.

    Article  CAS  Google Scholar 

  124. Badorff C, Lee G-H, Lamphar BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in acquired cardiomyopathy. Nature Med 1999;5:320–326.

    Article  PubMed  CAS  Google Scholar 

  125. Carlquist JF. Menlove RL, Murray MB, et al. HLA Class II (DR and DQ) antigen associations in idiopathic dilated cardiomyopathy: Validation study and meta-analysis of published HLA association studies. Circulation 1991; 83:515–522.

    Article  PubMed  CAS  Google Scholar 

  126. Limas CJ, Limas C. HLA-DR antigen linkage of anti-beta receptor antibodies in idiopathic dilated and ischemic cardiomyopathy. Br Heart J 1992; 67:402405.

    Article  Google Scholar 

  127. Limas CJ, Limas C, Boudoulas H. HLA-DQA1 and-DQB1 gene haplotypes in familial cardiomyopathy. Am J Cardiol 1994; 74:510–512.

    Article  PubMed  CAS  Google Scholar 

  128. Caforio AL, Keeling PJ, Zachara E, et al. Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet 1994 334:773–777.

    Article  Google Scholar 

  129. KuhI U, Noutsias M, Seeberg B, et al. Immunohistological evidence for a chronic intramyocardial inflammatory dilated cardiomyopathy. Heart 1996; 75:295–300.

    Article  Google Scholar 

  130. Liggett SB, Wagoner LE, Craft LL, et al. The Ile 164 α2-adrenerguc receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998; 102:1534–1539.

    Article  PubMed  CAS  Google Scholar 

  131. Mason DA, Moore JD, Green SA, et al. A gain-of-function polymorphism in a G-protein coupling domain of the humanαl-adrenerguc receptor. JBiol Chem 1999; 274:12670–12674.

    Article  CAS  Google Scholar 

  132. Bristow MR, Ginsbing R, Minobe W, et al. Decreased catecholamine sensitivity and α-adrenergic receptor density in failing human hearts. N Engl J Med 1982;307:205–211.

    Article  PubMed  CAS  Google Scholar 

  133. Kadambi VJ, Ponniah S, Harrer JM, et al. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 1996; 97:533–539.

    Article  PubMed  CAS  Google Scholar 

  134. Luo W, Grupp IL, Harrer J, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss ofα-agonist stimulation. Circ Res 1994; 75:401–409.

    Article  PubMed  CAS  Google Scholar 

  135. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in αl-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999; 96:7059–7064.

    Article  PubMed  CAS  Google Scholar 

  136. Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing theα2-adrenergic receptor. Science 1994; 264:582–586.

    Article  PubMed  CAS  Google Scholar 

  137. Iwase M, Bishop SP, Uechi M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac GSα overexpression. Circ Res 1996; 78:517–524.

    Article  PubMed  CAS  Google Scholar 

  138. Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing theα-adrenergic receptor kinase ora αARK inhibitor. Science 1995; 268:1350–1353.

    Article  PubMed  CAS  Google Scholar 

  139. Hunter JJ, Grace AA, Chien KR. Molecular and cellular biology of cardiac hypertrophy and failure. In: Chien KR, ed. Molecular basis of heart disease: a companion toBraunwald’s Heart Disease. Philadelphia: W.B.Saunders, 1999, pp 211–250.

    Google Scholar 

  140. Mann DL. Mechanisms and models in heart failure. A combinatorial approach. Circulation 1999; 100:999–1008.

    Article  PubMed  CAS  Google Scholar 

  141. Boxkurt B, Kribbs S, Clubb FJ Jr, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998; 97:1382–1391.

    Article  Google Scholar 

  142. Tan LB, Jalil JE, Pick R, et al. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 1991; 69:1185–1195.

    Article  PubMed  CAS  Google Scholar 

  143. Wolny A, Clozel J-P, Rein J, et al. Functional and biochemical analysis ofangiotensin II-forming pathways in the human heart. CircRes 1997; 80:219–227.

    CAS  Google Scholar 

  144. Beuckelman DJ, Nabauer M, Erdmann E. Intracellular calcium 1992;85:1046–1055.

    Google Scholar 

  145. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335:1182–1189.

    Article  PubMed  CAS  Google Scholar 

  146. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loretto C, Beltrami CA, Kratewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997; 336:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  147. Hirota H, Chen J, Betz UAK. Loss of a gpl30 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biochemical stress. Cell 1999;97:189–198.

    Article  PubMed  CAS  Google Scholar 

  148. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270:1326–1331.

    Article  PubMed  CAS  Google Scholar 

  149. Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998; 273:2161–2168.

    Article  PubMed  CAS  Google Scholar 

  150. Bowles NE, Towbin JA. Molecular aspects of myocarditis. Curr Opin Cardiol 1998; 13:179–184.

    PubMed  CAS  Google Scholar 

  151. Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1993;98:1728–1734.

    Article  Google Scholar 

  152. Tyagi SC, Campbell SE, Reddy HK, et al. Matrixmetalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol CellBiochem 1996; 155:13–21.

    CAS  Google Scholar 

  153. Om A, Hess ML. Inotrophic therapy of the failing myocardium. Clin Cardiol 1992 16:5–14.

    Article  Google Scholar 

  154. Konstam MA, Cody RJ. Short-term use of intravenousmilrinone for heart failure. Am J Cardiol 1995; 75:822.

    Article  PubMed  CAS  Google Scholar 

  155. Bristow MR. Pathophysiologic and pharmacologic rationales for clinical management of chronic heart failure with beta-blocking agents. Am J Cardiol 1993; 71:12C–22C.

    Article  PubMed  CAS  Google Scholar 

  156. Nishimura RA, Hayes DL, Holmes DR, et al: Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: An acute Doppler and catheterization hemodynamic study. J Am Coll Cardiol 1993 25:281–288.

    Article  Google Scholar 

  157. Mason JW, O’Connell JB, Herskowitz A, et al: A clinical trial of immunosuppressive therapy for myocarditis. N Engl J Med 1995 333:269–275.

    Article  PubMed  CAS  Google Scholar 

  158. Parrillo JE, Cunnion RE, Epstein SE, et al: A prospective, randomized controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med 1989;321:1061–1068.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Towbin, J.A., Bowles, N.E. (2000). Familial Dilated Cardiomyopathy. In: Berul, C.I., Towbin, J.A. (eds) Molecular Genetics of Cardiac Electrophysiology. Developments in Cardiovascular Medicine, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4517-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4517-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7037-6

  • Online ISBN: 978-1-4615-4517-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics