Skip to main content

Evolution of Retroposons

  • Chapter
Book cover Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 27))

Abstract

The term SINE was first coined (Singer, 1982) to describe the short interspersed elements (as opposed to the LINEs, long interspersed elements) that were found throughout many eukaryotic genomes. SINEs were defined only on the basis of their length and repetition. We can now separate the short repeated DNA elements into a number of classes, including the retroposons (Rogers, 1983), variable number of tandem repeats or VNTRs (Nakamura et al., 1987), and a number of smaller families of sequences whose nature is not yet understood (Jurka, 1990; Kaplan et al., 1991). Each of these subclasses has distinctly different characteristics; here we will discuss the retroposons only. The retroposons represent interspersed repeated elements that apparently have amplified via an RNA intermediate (Jagadeeswaran et al., 1981) [reviewed in Rogers (1983, 1985) and Weiner et al. (1986)], but do not code for any proteins that may aid the amplification process. In that sense, the retroposons are only differentiated from the processed pseudogenes based on their higher copy number. In this review, we will use the terms SINEs and retroposons interchangeably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeniyi-Jones, S., and Zasloff, M., 1985, Transcription, processing and nuclear transport of a B1 Alu RNA species complementary to an intron of the murine α-fetoprotein gene, Nature 317:81.

    PubMed  CAS  Google Scholar 

  • Anzai, K., Kobayashi, S., Suehiro, Y., and Goto, S., 1987, Conservation of the ID sequence and its expression as small RNA in rodent brains: Analysis with cDNA for mouse brain-specific small RNA, Mol. Brain Res. 2:43.

    CAS  Google Scholar 

  • Batzer, M. A., and Deininger, P. L., 1991, A human-specific subfamily of Alu sequences, Genomics 9:481.

    PubMed  CAS  Google Scholar 

  • Batzer, M. A., Kilroy, G. E., Richard, P. E., Shaikh, T. H., Desselle, T. D., Hoppens, C. L., and Deininger, P. L., 1990, Structure and variability of recently inserted Alu family members, Nucleic Acids Res. 18:6793.

    PubMed  CAS  Google Scholar 

  • Batzer, M. A., Gudi, V. A., Mena, J. C., Foltz, D. W., Herrera, R. J., and Deininger, P. L., 1991, Amplification dynamics of human-specific (HS) Alu family members, Nucleic Acids Res. 19:3619.

    PubMed  CAS  Google Scholar 

  • Bladon, T. S., and McBurney, M. W., 1991, The rodent B2 sequences can effect expression when present in the transcribed region of a reporter gene, Gene 98:259.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., Baron, W. F., Stout, D. B., and Davidson, E. H., 1988, Sources and evolution of human Alu repeated sequences, Proc. Natl. Acad. Sci. USA 85:4770.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., Stout, D. B., and Davidson, E. H., 1989, The current source of human Alu retroposons is a conserved gene shared with old world monkey, Proc. Natl. Acad. Sci. USA 86:3718.

    PubMed  CAS  Google Scholar 

  • Brookfield, J., 1993, The generation of sequence similarity in SINEs and LINEs [Letter], Trends Genet. 9:38.

    PubMed  CAS  Google Scholar 

  • Brosius, J., 1991, Retroposons—Seeds of evolution, Science 251:753.

    PubMed  CAS  Google Scholar 

  • Chen, S., Chen, Z., D’Auriol, L., LeConiat, M., Grausz, D., and Berger, R., 1989, Phl + bcr − acute leukemias: Implications of Alu sequences in a chromosomal translocation occurring in the new cluster region within the BCR gene, Oncogene 4:195.

    PubMed  CAS  Google Scholar 

  • Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W., 1989, Molecular basis of base substitution hotspots in Escherichia coli, Nature 274:775.

    Google Scholar 

  • Daniels, G. R., and Deininger, P. L., 1983, A second major class of Alu family repeated DNA sequences in a primate genome, Nucleic Acids Res. 11:7595.

    PubMed  CAS  Google Scholar 

  • Daniels, G. R., and Deininger, P. L., 1985a, Repeat sequence families derived from mammalian tRNA genes, Nature 317:819.

    PubMed  CAS  Google Scholar 

  • Daniels, G. R., and Deininger, P. L., 1985b, Integration site preferences of the Alu family and similar repetitive DNA sequences, Nucleic Acids Res. 13:8939.

    PubMed  CAS  Google Scholar 

  • Daniels, G. R., and Deininger, P. L., 1991, Characterization of a third major SINE family of repetitive sequences in the galago genome, Nucleic Acids Res. 19:1649.

    PubMed  CAS  Google Scholar 

  • Daniels, G. R., Fox, G. M., Loewensteiner, D., Schmid, C. W., and Deininger, P. L., 1983, Species-specific homogeneity of the primate Alu family of repeated DNA sequences, Nucleic Acids Res. 11:7579.

    PubMed  CAS  Google Scholar 

  • DeChiara, T. M., and Brosius, J., 1987, Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content, Proc. Natl. Acad. Sci. USA 84:2624.

    PubMed  CAS  Google Scholar 

  • Deininger, P. L., 1989, SINEs short interspersed repeated DNA elements in higher eucaryotes, in: Mobile DNA (M. Howe and D. Berg, eds.), p. 619, American Society for Microbiology Press, Washington, D.C.

    Google Scholar 

  • Deininger, P. L., and Daniels, G. R., 1986, The recent evolution of mammalian repetitive DNA elements, Trends Genet. 2:76.

    CAS  Google Scholar 

  • Deininger, P. L., and Slagel, V. K., 1988, Recently amplified Alu family members share a common parental Alu sequence, Mol. Cell. Biol. 8:4566.

    PubMed  CAS  Google Scholar 

  • Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T., and Schmid, C. W., 1981, Base sequence studies of 300 nucleotide renatured repeated human DNA clones, J. Mol. Biol. 151:17.

    PubMed  CAS  Google Scholar 

  • Deininger, P. L., Batzer, M. A., Hutchison, III, C. A., and Edgell, M. H., 1992, Master genes in mammalian repetitive DNA amplification, Trends Genet. 8:307.

    PubMed  CAS  Google Scholar 

  • Deragon, J.-M., Sinnett, D., and Labuda, D., 1990, Reverse transcriptase activity from human embryonal carcinoma cells NTera2Dl, EMBO J. 9:3363.

    PubMed  CAS  Google Scholar 

  • Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm and genome evolution, Nature 284:601.

    PubMed  CAS  Google Scholar 

  • Duncan, C., H., 1987, Novel Alu-type repeat in artiodactyls, Nucleic Acids Res. 15:1340.

    PubMed  CAS  Google Scholar 

  • Edwards, M. C., and Gibbs, R. A., 1992, A human dimorphism resulting from loss of an Alu, Genomics 14:590.

    PubMed  CAS  Google Scholar 

  • Ellis, N. A., Goodfellow, P. J., Pym, B., Smith, M., Palmer, M., Frischauf, A.-M., and Goodfellow, P. N., 1989, The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome, Nature 337:81.

    PubMed  CAS  Google Scholar 

  • Endoh, H., and Okada, N., 1986, Total DNA transcription in vitro: A procedure to detect highly repetitive and transcribable sequences with tRNA-like structures, Proc. Natl. Acad. Sci. USA 83:251.

    PubMed  CAS  Google Scholar 

  • Endoh, H., Nagahashi, S., and Okada, N., 1990, A highly repetitive and transcribable sequence in the tortoise genome is probably a retroposon, Eur. J. Biochem. 189:25.

    PubMed  CAS  Google Scholar 

  • Frengen, E., Thomsen, P., Kristensen, T., Kran, S., Miller, R., and Davies, W., 1991, Porcine SINEs: Characterization and use in species-specific amplification, Genomics 10:949.

    PubMed  CAS  Google Scholar 

  • Georgiev, G. P., Kramerov, D. A., Ryskov, K. G., Skryabin, K. G., and Lukanidin, E. M., 1983, Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance, in: Cold Spring Harbor Symposium on Quantitative Biology, Vol. XLVII, p. 1109, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Hartl, D. L., 1988, A Primer of Population Genetics, 2nd ed., Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Hess, J. F., Fox, G. M., Schmid, C., and Shen, C.-K. J., 1983, Molecular evolution of the human adult α-like globin gene region: Insertion and deletion of Alu family repeats and non-Alu DNA sequences, Proc. Natl. Acad. Sci. USA 80:5970.

    PubMed  CAS  Google Scholar 

  • Holmes, S. E., Singer, M. F., and Swergold, G. D., 1992, Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element, J. Biol. Chem. 276:19765.

    Google Scholar 

  • Jagadeeswaran, P., Forget, B. G., and Weissman, S. M., 1981, Short interspersed repetitive DNA elements in eucaryotes: Transposable DNA elements generated by reverse transcription of RNA pol III transcripts? Cell 26:141.

    PubMed  CAS  Google Scholar 

  • Jelinek, W. R., Toomey, T. P., Leinwand, L., Duncan, C., Biro, P. A., Choudary, P. V., Weissman, S. M., Rubin, C. M., Houck, C. M., Deininger, P. L., and Schmid, C. W., 1980, Ubiquitous interspersed repeated sequences in mammalian genomes, Proc. Natl. Acad. Sci. USA 77: 1398.

    PubMed  CAS  Google Scholar 

  • Jurka, J., 1990, Novel families of interspersed repetitive elements from the human genome, Nucleic Acids Res. 18:137.

    PubMed  CAS  Google Scholar 

  • Jurka, J., and Milosavljevic, A., 1991, Reconstruction and analysis of human Alu genes, J. Mol. Evol. 32:105.

    PubMed  CAS  Google Scholar 

  • Jurka, J., and Smith, T., 1988, A fundamental division in the Alu family of repeated sequences, Proc. Natl. Acad. Sci. USA 85:4775.

    PubMed  CAS  Google Scholar 

  • Jurka, J., and Zuckerkandl, E., 1991, Free left arms as precursor molecules in the evolution of Alu sequences, J. Mol. Evol. 33:49.

    PubMed  CAS  Google Scholar 

  • Kaplan, D. J., Jurka, J., Solus, J. F., and Duncan, C. H., 1991, Medium reiteration frequency repetitive sequences in the human genome, Nucleci Acids Res. 19:4731.

    CAS  Google Scholar 

  • Kato, S., Tachibana, K., Takayama, N., Kataoka, H., Yoshida, M., and Takano, T., 1991, Genetic recombination in a chromosomal translocation t〈2;8〉〈p11; q24〉 of a Burkitt’s lymphoma cell line, K0BK101, Gene 97:239.

    PubMed  CAS  Google Scholar 

  • Kaukinen, J., and Varvio, S.-L., 1992, Artiodactyl retroposons: Association with microsatellites and use in SINEmorph detection by PCR, Nucleic Acids Res. 20:2955.

    PubMed  CAS  Google Scholar 

  • Kido, Y., Aono, M., Yamaki, T., Matsumoto, K., Murata, S., Saneyoshi, M., and Okada, N., 1991, Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution, Proc. Natl. Acad. Sci. USA 88:2326.

    PubMed  CAS  Google Scholar 

  • King, D., Snider, L. D., and Lingrel, J. B., 1986, Polymorphism in an androgen-regulated mouse gene is the result of the insertion of a B1 repetitive element in the transcription unit, Mol. Cell. Biol. 6:209.

    PubMed  CAS  Google Scholar 

  • Koishi, R., and Okada, N., 1991, Distribution of the salmonid Hpa I family in the salmonid species demonstrated by in vitro runoff transcription assay of total genomic DNA: A procedure to estimate repetitive frequency and sequence divergence of a certain repetitive family with a few known sequences, J. Mol. Evol. 32:43.

    PubMed  CAS  Google Scholar 

  • Korenberg, J. R., and Rykowski, M. C., 1988, Human genome organization: Alu, LINE and the molecular structure of metephase chromosome bands, Cell 53:391.

    PubMed  CAS  Google Scholar 

  • Krane, D. E., and Hardison, R. C., 1990, Short interspersed repeats in rabbit DNA can provide functional polyadenylation signals, Mol. Biol. Evol. 7:1.

    PubMed  CAS  Google Scholar 

  • Krane, D. E., Clark, A. G., Cheng, J.-F., and Hardison, R. C., 1991, Subfamily relationships and clustering of rabbit C repeats, Mol. Biol. Evol. 8:1.

    PubMed  CAS  Google Scholar 

  • Kress, M., Barra, Y., Seidman, J. G., Khoury, G., and Jay, G., 1984, Functional insertion of an Alu type 2 (B2 SINE) repetitive sequence in murine class I genes, Science 226:974.

    PubMed  CAS  Google Scholar 

  • Kuff, H., and Lueders, K. K., 1988, The intracisternal A-particle gene family: Structure and functional aspects, Adv. Cancer Res. 51:183.

    PubMed  CAS  Google Scholar 

  • Labuda, D., and Striker, G., 1989, Sequence conservation in Alu evolution, Nucleic Acids Res. 17:2477.

    PubMed  CAS  Google Scholar 

  • Leeflang, E. P., Liu, W.-M., Hashimoto, C., Choudary, P. V., and C. W. Schmid, 1992, Phylogenetic evidence for multiple Alu source genes, J. Mol. Evol. 35:7.

    PubMed  CAS  Google Scholar 

  • Li, W.-H., and Sadler, L. A., 1991, Low nucleotide diversity in man, Genetics 129:513.

    PubMed  CAS  Google Scholar 

  • Liu, W.-M., Leeflang, E. P., and Schmid, C. W., 1992, Unusual sequences of two old, inactive human Alu repeats, Biochim. Biophys. Acta 1132:306.

    PubMed  CAS  Google Scholar 

  • Maraia, R. J., 1991, The subset of mouse B1 (Alu-equivalent) sequences expressed as small cytoplasmic transcripts, Nucleic Acids Res. 19:5695.

    PubMed  CAS  Google Scholar 

  • Maraia, R., Zasloff, M., Plotz, P., and Adeniyi-Jones, S., 1988, Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed ctyoplasmic RNAs, Mol. Cell. Biol. 8:4433.

    PubMed  CAS  Google Scholar 

  • Maraia, R. J., Chang, D.-Y., Wolffe, A. P., Vorce, R. L., and Hsu, K., 1992, The RNA polymerase III terminator used by a B1-Alu element can modulate 3′ processing of the intermediate RNA product, Mol. Cell. Biol. 12:1500.

    PubMed  CAS  Google Scholar 

  • Matera, A. G., Hellmann, U., and Schmid, C. W., 1990a, A transpositionally and transcriptionally competent Alu subfamily, Mol. Cell. Biol. 10:5424.

    PubMed  CAS  Google Scholar 

  • Matera, A. G., Hellmann, U., Hintz, M. F., and Schmid, C. W., 1990b, Recently transposed Alu repeats result from multiple source genes, Nucleic Acids Res. 18:6019.

    PubMed  CAS  Google Scholar 

  • Mathias, S. L., Scott, A. F., Kazazian, H. H., Jr., Boeke, J. D., and Gabriel, A., 1991, Reverse transcriptase encoded by a human transposable element, Science 254:1808.

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Murakami, K., and Okada, N., 1986, Gene for lysine tRNA1 may be a progenitor of the highly repetitive and transcribable sequences present in the salmon genome, Proc. Natl. Acad. Sci. USA 83:3156.

    PubMed  CAS  Google Scholar 

  • Mayer, W. E., Jonker, M., Klein, D., Ivanyi, P., VanSeventer, G., and Klein, J., 1988, Nucleotide sequences of chimpanzee MHC class I alleles: Evidence for trans-species mode of evolution, EMBO J. 7:2765.

    PubMed  CAS  Google Scholar 

  • McKinnon, R. D., Danielson, P., Brow, M. A. D., Bloom, F. E., and Sutcliffe, J. G., 1987a, Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells, Mol. Cell. Biol. 7:2148.

    PubMed  CAS  Google Scholar 

  • McKinnon, R. D., Danielson, P., Brow, M. A., Godbout, M., Watson, J. B., and Sutcliffe, J. G., 1987b, The neuronal identifier sequence as a positive regulatory element for neuronal gene expression, in From Message to Mind: Directions in Developmental Neurobiology (S. Easter, K. Barald, and B. Carlson, eds.), p. 78, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Minnick, M. F., Stillwell, L. C., Heineman, J. M., and Stiegler, G. L., 1992, A highly repetitive DNA sequence possibly unique to canids, Gene 110:235.

    PubMed  CAS  Google Scholar 

  • Mochizuki, K., Umeda, M., Ohtsubo, H., and Ohtsubo, E., 1992, Characterization of a plant SINE, p-SINE1, in rice genomes, Jpn. J. Genet. 67:155.

    PubMed  CAS  Google Scholar 

  • Moos, M., and Gallwitz, D., 1983, Structure of two β-actin related processed genes one of which is located next to a simple repetitive sequence, EMBO J. 2:757.

    PubMed  CAS  Google Scholar 

  • Muratani, K., Hada, T., Yamamoto, Y., Kaneko, T., Shigeto, Y., Ohue, T., Furuyama, J., and Higashino, K., 1991, Inactivation of the cholinesterase gene by Alu insertion: Possible mechanism for human gene transposition, Proc. Natl. Acad. Sci. USA 88:11315.

    PubMed  CAS  Google Scholar 

  • Nagahashi, S., Endoh, H., Suzuki, Y., and Okada, N., 1991, Characterization of a tandemly repeated DNA sequence family originally derived by retroposition of tRNAGlu in the newt, J. Mol. Biol. 222:391.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., Leppert, M., O’Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., and White, R., 1987, Variable number of tandem repeat (VNTR) markers for human gene mapping, Science 235:1616.

    PubMed  CAS  Google Scholar 

  • Nelson, D. L., Ledbetter, S. A., Corbo, L., Victoria, M. F., Ramirez-Solis, R., Webster, T., Ledbetter, D. H., and Caskey, C. T., 1989, Alu polymerase chain reaction: A method for rapid isolation of human specific sequences from complex sources, Proc. Natl. Acad. Sci. USA 86:6686.

    PubMed  CAS  Google Scholar 

  • Oberbaumer, I., 1992, Retroposons do jump: A B2 element recently integrated in an 18S rDNA gene, Nucleic Acids Res. 20:671.

    PubMed  CAS  Google Scholar 

  • Okada, N., 1990, Transfer RNA-like structure of the human Alu family: Implications of its generation mechanism and possible functions, J. Mol. Evol. 31:500.

    PubMed  CAS  Google Scholar 

  • Okada, N., 1991a, SINEs: Short interspersed repeated elements of the eukaryotic genome, Trends Ecol. Evol. 6:358.

    PubMed  CAS  Google Scholar 

  • Okada, N., 1991b, SINEs, Curr. Opin. Genet. Dev. 1:498.

    PubMed  CAS  Google Scholar 

  • Orgel, L. E., and Crick, F. H. C., 1980, Selfish DNA: The ultimate parasite, Nature 284:604.

    PubMed  CAS  Google Scholar 

  • Paulson, K. E., and Schmid, C. W., 1986, Transcriptional inactivity of Alu repeats in HeLa cells, Nucleic Acids Res. 14:6145.

    PubMed  CAS  Google Scholar 

  • Perna, N. T., Batzer, M. A., Deininger, P. L., and Stoneking, M., 1992, Alu insertion polymorphism: A new type of marker for human population studies, Hum. Biol. 64:641.

    PubMed  CAS  Google Scholar 

  • Quentin, Y., 1988, The Alu family developed through successive waves of fixation closely connected with primate lineage history, J. Mol. Evol. 27:194.

    PubMed  CAS  Google Scholar 

  • Quentin, Y., 1989, Successive waves of fixation of B1 variants in rodent lineage history, J. Mol. Evol. 28:299.

    PubMed  CAS  Google Scholar 

  • Quentin, Y., 1992, Origin of the Alu family: A family ofAlu-like monomers gave birth to the left and right arms of the Alu elements, Nucleic Acids Res. 20:3397.

    PubMed  CAS  Google Scholar 

  • Rogers, J., 1983, Retroposons defined, Nature 301:460.

    PubMed  CAS  Google Scholar 

  • Rogers, J., 1985, The origin and evolution of retroposons. Int. Rev. Cytol. 93:187.

    PubMed  CAS  Google Scholar 

  • Rouyer, F., Simmier, M.-C., Page, D., and Weissenbach, J., 1987, A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination, Cell 51:417.

    PubMed  CAS  Google Scholar 

  • Ryan, S. C., and Dugaiczyk, A., 1989, Newly arisen DNA repeats in primate phylogeny, Proc. Natl. Acad. Sci. USA 86:9360.

    PubMed  CAS  Google Scholar 

  • Ryskov, A. P., Ivanov, P. L., Kramerov, D. A., and Georgiev, G. P., 1983, Mouse ubiquitous B2 repeat in polysomal and cytoplasmic poly (A)+ RNAs: Unidirectional orientation and 3′-end localization, Nucleic Acids Res. 18:6541.

    Google Scholar 

  • Saffer, J. D., and Thurston, S. J., 1989, A negative regulatory element with properties similar to those of enhancers is contained within an Alu sequence, Mol. Cell. Biol. 9:355.

    PubMed  CAS  Google Scholar 

  • Sainz, J., Pevny, L., Wu, Y., Cantor, C. R., and Smith, C. L., 1992, Distribution of interspersed repeats (Alu and Kpn) on Not I restriction fragments of human chromosome 21, Proc. Natl. Acad. Sci. USA 89:1080.

    PubMed  CAS  Google Scholar 

  • Sakamoto, K., and Okada, N., 1985a, Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes, J. Mol. Evol. 22:134.

    PubMed  CAS  Google Scholar 

  • Sakamoto, K., and Okada, N., 1985b, 5-Methylcytidylic modification of in vitro transcript from the rat identifier sequence; evidence that the transcript forms a tRNA-like structure, Nucleic Acids Res. 13:7195.

    PubMed  CAS  Google Scholar 

  • Sakamoto, K., Fordis, C. M., Corisco, C. D., Howard, T. H., and Howard, B., 1991, Modulation of HeLa cell growth by transfected 7SL RNA and Alu gene sequences, J. Biol. Chem. 266:3031.

    PubMed  CAS  Google Scholar 

  • Sapienza, C., and St-Jacques, B., 1986, ‘Brain-specific’ transcription and evolution of the identifier sequence, Nature 319:418.

    PubMed  CAS  Google Scholar 

  • Sawada, I., and Schmid, C. W., 1986, Primate evolution of the α-globin gene cluster and its Alu-like repeats, J. Mol. Biol. 192:693.

    PubMed  CAS  Google Scholar 

  • Sawada, I., Willard, C., Shen, C.-K. J., Chapman, B., Wilson, A. C., and Schmid, C. W., 1985, Evolution of Alu family repeats since the divergence of human and chimpanzee, J. Mol. Evol. 22:.316.

    PubMed  CAS  Google Scholar 

  • Schimenti, J. C., and Duncan, C. H., 1984, Ruminant globin gene structures suggest an evolutionary role for Alu-type repeats, Nucleic Acids Res. 12:1641.

    PubMed  CAS  Google Scholar 

  • Schmid, C. W., 1991, Human Alu subfamilies and their methylation revealed blot hybridization, Nucleic Acids Res. 19:5613.

    PubMed  CAS  Google Scholar 

  • Schmid, C. W., and Jelinek, W. R., 1982, The Alu family of dispersed repetitive sequences, Science 216:1065.

    PubMed  CAS  Google Scholar 

  • Schmid, C., and Maraia, R., 1993, Transcriptional regulation and transpositional selection of active SINE sequences, Curr. Opin. Genet. Dev. 2:874.

    Google Scholar 

  • Schmid, C. W., and Shen, C.-K. J., 1986, The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates, in Molecular Evolutionary Genetics (R. J. MacIntyre, ed.), p. 323, Plenum Press, New York.

    Google Scholar 

  • Schuler, L. A., Weber, J. L., and Gorski, J., 1983, Polymorphism near the rat prolactin gene caused by insertion of an Alu-like element, Nature 305:159.

    PubMed  CAS  Google Scholar 

  • Shen, M.-J., Batzer, M. A., and Deininger, P. L., 1991, Evolution of the master Alu gene (s), J. Mol. Evol. 33:311.

    PubMed  CAS  Google Scholar 

  • Singer, M. F., 1982, SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes, Cell 28:433.

    PubMed  CAS  Google Scholar 

  • Sinnett, D., Deragon, J.-M., Simard, L. R., and Labuda, D., 1990, Alumorphs—Human DNA polymorphisms detected by polymerase chain reaction using Alu-specific primers, Genomics 7:331.

    PubMed  CAS  Google Scholar 

  • Sinnett, D., Richer, C., Deragon, J.-M., and Labuda, D., 1991, Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units, J. Biol. Chem. 266:8675.

    PubMed  CAS  Google Scholar 

  • Sinnett, D., Richer, C., Deragon, J.-M., and Labuda, D., 1992, Alu RNA transcripts in human embryonal carcinoma cells; model of post-transcriptional selection of master sequences, J. Mol. Biol. 226:689.

    PubMed  CAS  Google Scholar 

  • Skowronski, J., Plucienniczak, A., Bednarek, A., and Jaworski, J., 1984, Bovine 1709 satellite recombination hotspots and dispersed repeated DNA sequences, J. Mol. Biol. 177:399.

    PubMed  CAS  Google Scholar 

  • Slagel, V. K., and Deininger, P. L., 1989, In vivo transcription of a cloned prosimian primate SINE sequence, Nucleic Acids Res. 17:8669.

    PubMed  CAS  Google Scholar 

  • Slagel, V., Flemington, E., Traina-Dorge, V., Bradshaw, Jr., H., and Deininger, P. L., 1987, Clustering and sub-family relationships of the Alu family in the human genome, Mol. Biol. Evol. 4:19.

    PubMed  CAS  Google Scholar 

  • Smidt, M., Kirsch, I., and Ratner, L., 1990, Deletion of Alu sequences in the fifth c-sis intron in individuals with meningiomas, J. Clin. Invest. 86:1151.

    PubMed  CAS  Google Scholar 

  • Sprague, K. U., 1992, New twists in class III transcription, Curr. Opin. Cell Biol. 4:475.

    PubMed  CAS  Google Scholar 

  • Stoppa-Lyonnet, D., Carter, P. E., Meo, T., and Tosi, M., 1990, Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements, Proc. Natl. Acad. Sci. USA 87:1551.

    PubMed  CAS  Google Scholar 

  • Tiedge, H., Fremeau, R. T., Jr., Weinstock, P. H., Arancio, O., and Brosius, J., 1991, Dendritic location of neural BC1 RNA, Proc. Natl. Acad. Sci. USA 88:2093.

    PubMed  CAS  Google Scholar 

  • Tiedge, H., Chen, W., and Brosius, J., 1993, Primary structure, neural-specific expression, and dendritic location of human BC200 RNA, J. Neurosci. 13:2382.

    PubMed  CAS  Google Scholar 

  • Trabuchet, G., Chebloune, Y., Savatier, P., Lachuer, J., Faure, C., Verdier, G., and Nigon, V. M., 1987, Recent insertion of an Alu sequence in the beta-globin gene cluster of the gorilla, J. Mol. Evol. 25:288.

    PubMed  CAS  Google Scholar 

  • Ullu, E., and Tschudi, C., 1984, Alu sequences are processed 7SL RNA genes, Nature 312:171.

    PubMed  CAS  Google Scholar 

  • Ullu, E., and Weiner, A. M., 1985, Upstream sequences modulate the internal promoter of the human 7SL RNA gene, Nature 318:371.

    PubMed  CAS  Google Scholar 

  • Vanin, E., 1984, Processed pseudogenes: Characteristics and evolution, Biochim. Biophys. Acta 782:231.

    PubMed  CAS  Google Scholar 

  • Wallace, M. R., Andersen, L. B., Saulino, A. M., Gregory, P. E., Glover, T. W., and Collins, F. S., 1991, A de novo Alu insertion results in neurofibromatosis type 1, Nature 353:864.

    PubMed  CAS  Google Scholar 

  • Watanabe, Y., Tsukada, T., Notake, M., Nakanishi, S., and Numa, S., 1982, Structural analysis of repetitive DNA sequences in the bovine corticotrophin-β-lipoprotein precursor gene region, Nucleic Acids Res. 10:1459.

    PubMed  CAS  Google Scholar 

  • Watson, J. B., and Sutcliffe, J. G., 1987, Primate brain-specific cytoplasmic transcript of the Alu repeat family, Mol. Cell. Biol. 7:3324.

    PubMed  CAS  Google Scholar 

  • Weiner, A. M., Deininger, P. L., and Eftradiatis, A., 1986, The reverse flow of genetic information: Pseudogenes and transposable elements derived from nonviral cellular RNA, Annu. Rev. Biochem. 55:631.

    PubMed  CAS  Google Scholar 

  • Willard, C., Nguyen, H. T., and Schmid, C. W., 1987, Existence of at least three distinct Alu subfamilies, J. Mol. Evol. 26:180.

    PubMed  CAS  Google Scholar 

  • Woods-Samuels, P., Kazazian, H., Jr., and Antonarakis, S., 1991, Nonhomologous recombination in the human genome: Deletions in the human factor VIII gene, Genomics 10:94.

    PubMed  CAS  Google Scholar 

  • Xiong, W., Li, W.-H., Posner, I., Yamamura, T., Yamamoto, A., Gotto, A. M., Jr., and Chan, L., 1991, No severe bottleneck during human evolution: Evidence from two apolipoprotein C-II deficiency alleles, Am. J. Hum. Genet. 48:383.

    PubMed  CAS  Google Scholar 

  • Zietkiewicz, E., Labuda, M., Sinnett, D., Glorieux, F. H., and Labuda, D., 1992, Linkage mapping by simultaneous screening of multiple polymorphic loci using Alu oligonucleotide-directed PCR, Proc. Natl. Acad. Sci. USA 89:8448.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., Latter, G., and Jurka, J., 1989, Maintenance of function without selection: Alu sequences as “cheap genes,” J. Mol. Evol. 29:504.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deininger, P.L., Batzer, M.A. (1993). Evolution of Retroposons. In: Hecht, M.K., MacIntyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2878-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2878-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6248-7

  • Online ISBN: 978-1-4615-2878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics