Skip to main content

Structure and Possible Function of Aspartic Proteinases in Barley and other Plants

  • Chapter
Aspartic Proteinases

Abstract

The aim of this short article is to review the literature on plant aspartic proteinases in general as well as to present more detailed information on our studies on the barley aspartic proteinase. Aspartic proteinases (EC 3.4.23) are widely dispersed in the plant kingdom including monocotyledonous and dicotyledonous species as well as gymnosperms. These enzymes have been detected in seeds, leaves and flowers in different plants as well as in the digestive fluid of some insectivorous species. Like their animal and microbial counterparts (1–3), plant aspartic proteinases are inhibited by pepstatin and preferentially cleave peptide bonds between amino acid residues with large hydrophobic side chains. The biological functions of plant aspartic proteinases are not as well characterized as those of animal aspartic proteinases. In the insectivorous plant Nepenthes, aspartic proteinase may participate in the digestion of insects trapped in the digestive fluid of the pitcher. In the leaves of tomato and tobacco, aspartic proteinases may contribute to the hydrolysis of extracellular pathogenesis-related proteins. Aspartic proteinases have also been reported to be associated with the intracellular storage protein bodies of hemp and buckwheat seeds and to take part in the hydrolysis of storage proteins in wheat and cocoa in vitro. In addition, aspartic proteinases from seeds have been shown to process the Arabidopsis 2S albumin storage proteins in vitro. The cDNA-derived primary structures of barley, rice, and cardoon aspartic proteinases are known. The open reading frame of the barley enzyme consists of a 66-amino acid preprosequence and a 442 residues long mature protein, about the same size as recently also revealed for rice and cardoon enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Tang and R.N.S. Wong, Evolution in the structure and function of aspartic proteases, J. Cell. Biochem. 33:53(1987).

    Google Scholar 

  2. D.R. Davies, The structure and function of the aspartic proteinases, Annu. Rev. Biophys. Biophys. Chem. 19:189(1990).

    Google Scholar 

  3. P.B. Szecsi, ed., The aspartic proteases. Scand. J. Clin. Lab. Invest. 52:(Suppl. 210) (1992).

    Google Scholar 

  4. Y. Kawamura and D. Yonezawa, Wheat flour proteases and their action on gluten proteins in dilute acetic acid, Agric. Biol. Chem. 46:767 (1982)

    Article  CAS  Google Scholar 

  5. P.C. Morris, R.C. Miller, and D.J. Bowles, Endopeptidase activity in dry harvest-ripe wheat and barley grains, Plant Sci. 39:121 (1985).

    Article  CAS  Google Scholar 

  6. M.A. Belozersky, Sh.T. Sarbakanova, and Ya.E. Dunaevsky, Aspartic proteinase from wheat seeds: isolation, properties and action on gliadin, Planta 177:321 (1989).

    Article  Google Scholar 

  7. Y.E. Dunaevsky, S.T. Sarbakanova, and M.A. Belozersky, Wheat seed carboxypeptidase and joint action on gliadin of proteases from dry and germinating seeds, J. Exp. Bot. 40:1323 (1989).

    Article  Google Scholar 

  8. L. Galleschi and U. Andreoni, A rapid and sensitive method of assaying the purified aspartic proteinases in cereals, Plant Physiol. Biochem. 28:793 (1990).

    CAS  Google Scholar 

  9. G.J.T. Frith, K.H.J. Gordon, and M.J. Dalling, Proteolytic enzymes in green wheat leaves I. Isolation on DEAE-cellulose of several proteinases with acid pH optima, Plant and Cell Physiol. 19:491 (1978).

    CAS  Google Scholar 

  10. G.J.T. Frith, M.B. Peoples, and M.J. Dalling, Proteolytic enzymes in green wheat leaves III. Inactivation of acid proteinase II by diazoacetyl-DL-norleucine methyl ester and 1,2-epoxy-3-(p-nitrophenoxy)-propane, Plant and Cell Physiol. 19:819 (1978).

    CAS  Google Scholar 

  11. G.J.T. Frith, L.B. Swinden, and M.J. Dalling, Proteolytic enzymes in green wheat leaves II. Purification by affinity chromatography, and some properties of proteinases with acid pH optima, Plant and Cell Physiol. 19:1029 (1978).

    CAS  Google Scholar 

  12. L. Galleschi, A. Capocchi, P. Giannoni, and C. Floris, Proteinase activities in quiescent and germinating seeds of xHaynaldotieum sardoum, Physiol. Plant. 75:1 (1989).

    Article  CAS  Google Scholar 

  13. E. Doi, D. Shibata, T. Matoba, and D. Yonezawa, Characterization of pepstatin-sensitive acid protease in resting rice seeds, Agric. Biol. Chem. 44:741 (1980).

    Article  CAS  Google Scholar 

  14. H. Hashimoto, R. Nishi, H. Uchimiya, and A. Kato, Nucleotide sequence of a cDNA encoding aspartic proteinase in rice, Accession number D12777, submitted to the DNA database of Japan (August 1, 1992).

    Google Scholar 

  15. G.K. Garg and T.K. Virupaksha, Acid protease from germinated sorghum. 1. Purification and characterization of the enzyme, Eur. J. Biochem. 17:4 (1970).

    Article  PubMed  CAS  Google Scholar 

  16. G.K. Garg and T.K. Virupaksha, Acid protease from germinated sorghum. 2. Substrate specificity with synthetic peptides and ribonuclease A, Eur. J. Biochem. 17:13 (1970).

    Article  PubMed  CAS  Google Scholar 

  17. B. San Segundo, J.M. Casacuberta, and P. Puigdomenech, Sequential expression and differential hormonal regulation of proteolytic activities during germination in Zea mays L., Planta 181:467 (1990).

    CAS  Google Scholar 

  18. U. Vidyavathi, B. Shivaraj, and T.N. Pattabiraman, Proteases in germinating finger millet (Eleusine coracana) seeds, J. Biosci. 5:219 (1983).

    Article  CAS  Google Scholar 

  19. A.J. St. Angelo, R.L. Ory, and H.J. Hansen, Localization of an acid proteinase in hempseed, Phytochemistry 8:1135 (1969).

    Article  Google Scholar 

  20. J.D. Bewley and M. Black, eds., “Seeds — Physiology of development and germination,” p. 253–303, Plenum Press, New York (1986).

    Google Scholar 

  21. A.J. St. Angelo, R.L. Ory, and H.J. Hansen, Purification of acid proteinase from Cannabis sativa L., Phytochemistry 8:1873 (1969).

    Article  Google Scholar 

  22. A.J. St. Angelo and R.L. Ory, Properties of a purified proteinase from hempseed, Phytochemistry 9:1933(1970).

    Article  Google Scholar 

  23. M.A. Belozerskii, Ya.E. Dunaevskii, G.N. Rudenskaya, and V.M. Stepanov, Carboxyl proteinases from buckwheat seeds, Biochemistry (USSR) 49:401 (1984).

    Google Scholar 

  24. E.N. Elpidina, Y.E. Dunaevsky, and M.A. Belozersky, Protein bodies from buckwheat seed cotyledons: isolation and characteristics, J. Exp. Bot. 41:969 (1990).

    Article  CAS  Google Scholar 

  25. S. Shinano and K. Fukushima, Studies on lotus protease. Part II. Purification and some properties, Agric. Biol. Chem. 33:1236 (1969).

    Article  CAS  Google Scholar 

  26. S. Shinano and K. Fukushima, Studies on lotus protease. Part III. Some physicochemical and enzymic properties, Agric. Biol. Chem. 35:1488 (1971).

    Article  CAS  Google Scholar 

  27. B.E. Juniper, R.J. Robins, and D.M. Joel, eds., “The carnivorous plants,” p. 189–207, Academic Press, London (1989).

    Google Scholar 

  28. S. Amagase, Digestive enzymes in insectivorous plants III. Acid proteases in the genus Nepenthes and Drosera peltata, J. Biochem. 72:73 (1972).

    PubMed  CAS  Google Scholar 

  29. K. Takahashi, W.-J. Chang, and J.-S. Ko, Specific inhibition of acid proteases from brain, kidney, skeletal muscle, and insectivorous plants by diazoacetyl-DL-norleucine methyl ester and by pepstatin, J. Biochem. 76:897 (1974).

    PubMed  CAS  Google Scholar 

  30. Z.A. Tökés, W.C. Woon, and S.M. Chambers, Digestive enzymes secreted by the carnivorous plant Nepenthes macferlanei L., Planta 119:39 (1974).

    Article  Google Scholar 

  31. S. Amagase, S. Nakayama, and A. Tsugita, Acid protease in Nepenthes. II. Study on the specificity of nepenthesin, J. Biochem. 66:431 (1969).

    PubMed  CAS  Google Scholar 

  32. A. Polanowski, T. Wilusz, M.K. Kolaczkowska, M. Wieczorek, and A. Wilimowska-Pelc, Purification and characterization of aspartic proteinases from Cucumis sativus and Cucurbita maxima seeds, in: “Aspartic Proteinases and their Inhibitors,” V. Kostka, ed., p. 49, Walter de Gruyter, Berlin, New York (1985).

    Google Scholar 

  33. D.J. Bowles, Defense-related proteins in higher plants, Annu. Rev. Biochem. 59:873 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. I. Rodrigo, P. Vera, and V. Conejero, Degradation of tomato pathogenesis-related proteins by an endogenous 37-kDa aspartyl endoproteinase, Eur. J. Biochem. 184:663 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. I. Rodrigo, P. Vera, L.C. Van Loon, and V. Conejero, Degradation of tobacco pathogenesis-related proteins. Plant Physiol., Plant Physiol. 95:616 (1991).

    CAS  Google Scholar 

  36. U. Heimgartner, M. Pietrzak, R. Geertsen, P. Brodelius, A.C. da Silva Figueiredo, and M.S.S. Pais, Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus, Phytochemistry 29:1405 (1990).

    Article  CAS  Google Scholar 

  37. C. Faro, P. Verissimo, Y. Lin, J. Tang, and E. Pires, Cardosin A and B, aspartic proteinases from Cynara cardunculus L., The 5th International Conference on Aspartic Proteinases, Gifu, Japan, September 19–24, 1993, abstract book, P31.

    Google Scholar 

  38. M. Cordeiro, E. Jakob, Z. Puhan, M.S. Pais, and P.E. Brodelius, Milk clotting and proteolytic activities of purified cynarases from Cynara cardunculus — a comparison to chymosin, Milchwissenschaft 47:683 (1992).

    CAS  Google Scholar 

  39. C.J. Faro, A.J.G. Moir, and E.V. Pires, Specificity of a milk clotting enzyme extracted from the thistle Cynara cardunculus L.: action on oxidised insulin and κ-casein, Biotech. Lett. 14:841 (1992).

    Article  CAS  Google Scholar 

  40. I.Q. Macedo, C.J. Faro, and E.M. Pires, Specificity and kinetics of the milk-clotting enzyme from cardoon (Cynara cardunculus L.) toward bovine κ-casein, J. Agric. Food Chem., 41:1537 (1993).

    Article  CAS  Google Scholar 

  41. M. Cordeiro, Z.-T. Xue, M. Pietrzak, M.S. Pais, and P. Brodelius, Plant aspartic proteinases from Cynara cardunculus (cardoon). Nucleotide sequence of a cDNA encoding cynarase and it’s tissue specific expression, The 5th International Conference on Aspartic Proteinases, Gifu, Japan, September 19–24, 1993, abstract book, P30.

    Google Scholar 

  42. K. D’Hondt, D. Bosch, J. Van Damme, M. Goethals, J. Vandekerckhove, and E. Krebbers, An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro, J. Biol. Chem. 268:20884(1993).

    PubMed  Google Scholar 

  43. P.-M. Kirchhoff, B. Biehl, and G. Crone, Peculiarity of the accumulation of free amino acids during cocoa fermentation, Food Chem. 31:295 (1989).

    Article  CAS  Google Scholar 

  44. B. Biehl, H. Heinrichs, H. Ziegeler-Berghausen, S. Srivastava, Q. Xiong, D. Passern, V.I. Senyuk, and M. Hammoor, The proteases of ungerminated cocoa seeds and their role in the fermentation process, Angew. Bot. 67:59 (1993).

    CAS  Google Scholar 

  45. J. Voigt, B. Biehl, H. Heinrichs, S. Kamaruddin, G. Gaim Marsoner, and A. Hugi, In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem. 49:173 (1994).

    Article  Google Scholar 

  46. A. Mikkonen, Activities of some peptidases and proteinases in germinating kidney bean, Phaseolus vulgaris, Physiol. Plant. 68:282 (1986).

    Article  CAS  Google Scholar 

  47. H.M. Bond and D.J. Bowles, Characterization of soybean endopeptidase activity using exogenous and endogenous substrates, Plant Physiol. 72:345 (1983).

    Article  PubMed  CAS  Google Scholar 

  48. J.L. Garcia-Martinez and J. Moreno, Proteolysis of ribulose-1,5-bisphosphate carboxylase/oxygenase in Citrus leaf extracts, Physiol. Plant. 66:377 (1986).

    Article  CAS  Google Scholar 

  49. M.A. Salmia, S.A. Nyman, and J.J. Mikola, Characterization of the proteinases present in germinating seeds of Scots pine, Pinus sylvestris, Physiol. Plant. 42:252 (1978).

    Article  CAS  Google Scholar 

  50. M.A. Salmia, Proteinase activities in resting and germinating seeds of Scots pine, Pinus sylvestris, Physiol. Plant. 53:39 (1981).

    Article  CAS  Google Scholar 

  51. J. Bourgeois and L. Malek, Metabolic changes related to the acceleration of jack pine germination by osmotic priming, Tree Physiol. 8:407 (1991).

    Article  CAS  Google Scholar 

  52. J. Bourgeois and L. Malek, Purification and characterization of an aspartyl proteinase from dry jack pine seeds, Seed Sci. Res. 1:139 (1991).

    Article  CAS  Google Scholar 

  53. P. Sarkkinen, N. Kalkkinen, C. Tilgmann, J. Siuro, J. Kervinen, and L. Mikola, Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin D, Planta 186:317 (1992).

    Article  CAS  Google Scholar 

  54. R. Wrobel and B.L. Jones, Appearance of endoproteolytic enzymes during the germination of barley, Plant Physiol. 100:1508(1992).

    Google Scholar 

  55. J. Kervinen, M. Kontturi, and J. Mikola, Changes in the proteinase composition of barley leaves during senescence in field conditions, Cereal Res. Commun. 18:191 (1990).

    CAS  Google Scholar 

  56. P. Runeberg-Roos, J. Kervinen, V. Kovaleva, S. Gal, and N.V. Raikhel, The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro, Plant Physiol. 105:321 (1994).

    Article  PubMed  CAS  Google Scholar 

  57. P. Runeberg-Roos, K. Tormakangas, and A. Östman, Primary structure of a barley-grain aspartic proteinase — a plant aspartic proteinase resembling mammalian cathepsin D, Eur. J. Biochem. 202:1021 (1991).

    Article  PubMed  CAS  Google Scholar 

  58. J. Kervinen, P. Sarkkinen, N. Kalkkinen, L. Mikola, and M. Saarma, Hydrolytic specificity of the barley grain aspartic proteinase, Phytochemistry 32:799 (1993).

    Article  PubMed  CAS  Google Scholar 

  59. J. Mikola, Proteinases and peptidases in germinating cereal grains, in: “Fourth international symposium on pre-harvest sprouting in cereals,” D.J. Mares, ed., p. 463, Westview Press/Boulder, Colorado (1987).

    Google Scholar 

  60. T.-M. Enari and T. Sopanen, Mobilisation of endospermal reserves during the germination of barley, J. Inst. Brew. 92:25 (1986).

    CAS  Google Scholar 

  61. K. Törmakangas, J. Kervinen, A. Östman, and T. Teeri, Tissue-specific localization of aspartic proteinase in developing and germinating barley grains, Planta 195:116 (1994).

    Article  Google Scholar 

  62. S. Marttila, B.L. Jones, and A. Mikkonen, Differential localization of two acid proteinases in germinating barley (Hordeum vulgare) seed, Physiol. Plant. 93:317 (1995).

    Article  CAS  Google Scholar 

  63. K. Guruprasad, K. Törmäkangas, J. Kervinen, and T.L. Blundell, Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity, FEBS Lett. 352:131 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. M. Torruella, K. Gordon, and T. Hohn, Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins, EMBO J. 8:2819 (1989).

    PubMed  CAS  Google Scholar 

  65. M.-A. Grandbastien, A. Spielmann, and M. Caboche, Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics, Nature 337:376 (1989).

    Article  PubMed  CAS  Google Scholar 

  66. I. Manninen and A.H. Schulman, BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.), Plant Mol. Biol. 22:829 (1993).

    Article  PubMed  CAS  Google Scholar 

  67. J. Wellink and A. van Kammen, Proteases involved in the processing of viral polyproteins, Arch. Virol. 98:1 (1988).

    Article  PubMed  CAS  Google Scholar 

  68. S.D. Youngren, J.D. Boeke, N.J. Sanders, and D.J. Garfinkel, Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition, Mol. Cell. Biol. 8:1421 (1988).

    PubMed  CAS  Google Scholar 

  69. M. Mareš, B. Meloun, M. Pavlik, V. Kostka, and M. Baudyš, Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybean trypsin inhibitor family, FEBS Lett. 251:94(1989).

    Google Scholar 

  70. D.B. Maganja, B. Štrukelj, J. Pungerŭuar, F. Gubenšek, V. Turk, and I. Kregar, Isolation and sequence analysis of the genomic DNA fragment encoding an aspartic proteinase inhibitor homologue from potato (Solanum tuberosum L.), Plant Mol. Biol. 20:311 (1992).

    Article  PubMed  CAS  Google Scholar 

  71. T. Hildmann, M. Ebneth, H. Peña-Cortes, J.J. Sánchez-Serrano, L. Willmitzer, and S. Prat, General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding, Plant Cell 4:1157 (1992).

    PubMed  CAS  Google Scholar 

  72. J.D. Hansen and D.J. Hannapel, A wound-inducible potato proteinase inhibitor gene expressed in non-tuber-bearing species is not sucrose inducible, Plant Physiol. 100:164 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kervinen, J., Törmäkangas, K., Runeberg-Roos, P., Guruprasad, K., Blundell, T., Teeri, T.H. (1995). Structure and Possible Function of Aspartic Proteinases in Barley and other Plants. In: Takahashi, K. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 362. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1871-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1871-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5761-2

  • Online ISBN: 978-1-4615-1871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics