Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 496))

Abstract

Micro-finite element (µFE) analysis is a numerical technique to calculate mechanical properties of trabecular bone as they relate to its micro-structure. It is based on two recent developments. The first is a method for the three-dimensional graphics computer reconstruction of trabecular structure. With this method, high-resolution images of sequential cross-sections of a trabecular bone region are created. These images are digitized and stored in a computer. By stacking the cross-sectional images the original structure can be rebuild in the computer as a three-dimensional voxel (i.e. 3-D pixel) grid. Methods to create the high-resolution images can be destructive (e.g. serial sectioning and serial milling techniques1,2) or non-destructive (e.g. µCT and µMR imaging3,4.5,6) In both cases a resolution of 50 microns or better can usually be achieved for trabecular bone regions of approximately 1 cm3in size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Odgaard, K. Andersen, F. Melsen and H. J. G. Gundersen, A direct method for fast three-dimensional serial reconstruction.J. Microscopy.159, 335–342 (1990).

    Article  CAS  Google Scholar 

  2. J. D. Beck, B. L. Canfield, S. M. Haddock, T. J. Chen, M. Kothari, T. M. Keaveny, Three-dimensional imaging of trabecular bone using the computer numerically controlled milling techniqueBone21, 281 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. L. A. Feldkamp, S. A. Goldstein, A. M. Partitt, G. Jesion, M. Kleerekoper, The direct examination of three-dimensional bone architecture in vitro by computed tomographyJ. Bone Miner. Res.4, 3 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. P. Ruegsegger, B. Koller, R. Muller, A microtomographic system for the nondestructive evaluation of bone architectureCalcif. Tissue Int.58, 24 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. U. Bonse, F. Busch, O. Gunnewig, F. Beckmann, R. Pahl, G. Delling, M. Hahn, W. Graeff, 3D computed X-ray tomography of human cancellous bone at 8 microns spatial and l0(-4) energy resolutionBone Miner.25, 25 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. J.A. Hipp, A. Jansujwicz, C. A. Simmons, B. D. Snyder, Trabecular bone morphology from micro-magnetic resonance imagingJ. Bone Miner. Res.11, 286 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. D. P. Fyhrie, M. S. Hamid, R. F. Kuo and S. M. Lang, Direct three-dimensional finite element analysis of human vertebral cancellous bone.Trans. 38111 A. Meeting Orthop. Res. Soc.551 (1992).

    Google Scholar 

  8. S. J. Hollister, J. M. Brennan, N. Kikuchi, A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stressJ. Biomech.27, 433 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. B. van Rietbergen, H. Weinans, R. Huiskes, A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element modelsJ. Biomech.28, 69 (1995).

    Article  PubMed  Google Scholar 

  10. B. van Rietbergen, H. Weinans, B. J. W. Polman and R. Huiskes, Computational strategies for iterative solutions of large FEM applications employing voxel dataInt. J. Num. Meth. Eng.39, 2743–2767 (1996).

    Article  Google Scholar 

  11. P. Frey, B. Sarter, M. Gautherie, Fully automated mesh generation for 3-D domains based upon voxelsets Int. J. Num. Meth. Eng.37, 2735 (1994).

    Article  Google Scholar 

  12. R. Müller, P. Rüegsegger, Three-dimensional finite element modelling of non-invasively assessed trabecular bone structuresMed. Eng. Phys.17, 126 (1995).

    Article  Google Scholar 

  13. S. J. Hollister and N. Kikuchi, Direct analysis of trabecular bone stiffness and tissue level mechanics using an element-by-element homogenization method.Trans. 38th A. Meeting Orthop. Res. Soc.559 (1992).

    Google Scholar 

  14. S. J. Hollister, J. M. Brennan and N. Kikuchi, Recent Advances in Computer Methods, in:Biomechanics & Biomedical Engineering(Books & Journals Int. LTD, Swansea, UK, 1992), pp. 308–317.

    Google Scholar 

  15. A. A. Edidin, J. M. Dawson, M. Zhu and S. Chinchalkar, Direct estimation of the modulus of cancellous bone using a variable-stiffness FE modelTrans. 39th A. Meeting Orthop. Res. Soc.589 (1993).

    Google Scholar 

  16. D. P. Fyhrie and M. S. Hamid, The probability distribution of trabecular level strains for vertebral cancellous boneTrans. 39th A. Meeting Orthop. Res. Soc. 175 (1993).

    Google Scholar 

  17. B. van Rietbergen, F. Eckstein, B. Koller, R. Huiskes, F. Baaijens and P. Rüegsegger, Trabecular bone tissue strains in the healthy and osteoporotic human femurTrans. 46th meeting ORS25, 33 (2000).

    Google Scholar 

  18. A. Laib and P. Rüegsegger, Comparison of structure extraction methods for in vivo trabecular bone measurementsComput. Med. Imaging Graph.23, 69–74 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. B. van Rietbergen, R. Müller, D. Ulrich, P. Rüegsegger and R. Huiskes, Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructionsJ. Biomech.32, 443–451 (1999).

    Article  PubMed  Google Scholar 

  20. C. R. Jacobs, J. A. Mandell and G. S. Beaupré, A comparative study of automatic finite element mesh generation techniques in orthopaedic biomechanics.Bioeng. Confer. ASME/BED24, 512–514 (1993).

    Google Scholar 

  21. R. E. Guldberg and S. J. Hollister, Finite element solution errors associated with digital image-based mesh generationASME/BED28, 147–148 (1994).

    Google Scholar 

  22. R. E. Guldberg, S. J. Hollister, G. T. Charras, The accuracy of digital image-based finite element modelsJ Biomech Eng.120, 289–295 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. G. T. Charras and R. E. Guldberg, Improving the local solution accuracy of large-scale digital image-based finite element analysesJ Biomech.33, 255–259 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. A. J. Ladd, J. H. Kinney, D. L. Haupt, and S. A. Goldstein, Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulusI Orthop. Res.16, 622–628 (1998).

    Article  CAS  Google Scholar 

  25. D. Ulrich, B. van Rietbergen, H. Weinans, and P. Rüegsegger, Finite Element Analysis of trabecular bone structure: a comparison of image-based meshing techniquesJ. Biomech.31, 1187–1192 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. G. L. Niebur, J. C. Yuen, A. C. Hsia, T. M. Keaveny, Convergence behavior of high-resolution finite element models of trabecular boneJBiomech Eng.121, 629–635 (1999).

    Article  CAS  Google Scholar 

  27. A. J. Ladd and J. H. Kinney, Numerical errors and uncertainties in finite-element modeling of trabecular boneJ. Biomech.31, 941–9455 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. W. Pistoia, B. van Rietbergen, A. Laib and P. Rüegsegger, High-Resolution 3D pQCT is Adequate to Analyze the Mechanical Properties of Bone In-Vivo with Micro-FEJ. Biomech. Eng.accepted for publication (2000).

    Google Scholar 

  29. B. van Rietbergen, S. Majumdar, W. Pistoia, D. C. Newitt, M. Kothari, A. Laib and P. Rüegsegger, Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR imagesTechn. and Health Care6, 413–420 (1998).

    Google Scholar 

  30. B. van Rietbergen, J. Kabel, A. Odgaard and R. Huiskes, Determination of trabecular bone tissue elastic properties by comparison of experimental and finite element results, in:Material identification using mixed numerical experimental methodsedited by H. SolandC. W. J. Oomens, (Kluwer, The Netherlands, 1997), pp. 183–192.

    Chapter  Google Scholar 

  31. C. R. Jacobs, B. R. Davis, C. J. Rieger, J. J. Francis, M. Saad and D. P. Fyhrie, The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modelingJBiomech32, 1159–1164 (1999).

    Article  CAS  Google Scholar 

  32. J. Kabel, B. van Rietbergen, M. Dalstra, A. Odgaard and R. Huiskes, The role of an effective isotropic tissue modulus in the elastic properties of cancellous boneJ. Biomech.32, 673–680 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. T. M. Keaveny, T. P. Pinilla, R. P. Crawford, D. L. Kopperdahl and A. Lou, Systematic and random errors in compression testing of trabecular boneJOrthop Res.15, 101–110 (1997).

    Article  CAS  Google Scholar 

  34. B. van Rietbergen, A. Odgaard, J. Kabel and R. Huiskes, Direct mechanics assessment of mechanical symmetries and properties of trabecular bone architectureJ. Biomech.29, 1653–1657 (1996).

    PubMed  Google Scholar 

  35. J. Kabel, B. van Rietbergen, A. Odgaard and R. Huiskes, Constitutive relationships of fabric, density, and elastic properties in cancellous bone architectureBone25, 481–486 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. D. Ulrich, B. van Rietbergen, A. Laib, P. Rüegsegger, The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular boneBone25, 55–60, (1999).

    Article  PubMed  CAS  Google Scholar 

  37. B. van Rietbergen, D. Ulrich, J. Kabel and P. Rüegsegger, Estimates in normal versus osteoportic boneProc. 14th Europ. Soc. Biomat.14, OST13 (1998).

    Google Scholar 

  38. G. Yang, J. Kabel, B. van Rietbergen, A. Odgaard, R. Huiskes and S. C. Cowin, The anisotropic Hooke’s law for cancellous bone and woodJ. Elasticity53, 125–146 (1999).

    Article  Google Scholar 

  39. A. Odgaard, J. Kabel, B. van Rietbergen, M. Dalstra and R. Huiskes, Fabric and elastic principal directions of cancellous bone are closely relatedJ. Biomech.30, 487–495 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. B. van Rietbergen, D. Ulrich, W. Pistoia, R. Huiskes and P. Rüegsegger, Prediction of trabecular bone failure parameters using a tissue failure criterionComp. Sim. & Mod. in Med..1(2), 98–101 (2000).

    Google Scholar 

  41. G. Niebur, J. C. Yuen and T. M. Keaveny, Role of hard tissue quality in trabecular bone failure mechanismsTrans. 46th ORS11 (2000)

    Google Scholar 

  42. G. L. Niebur, M. J. Feldstein, J. C. Yuen, T. J. Chen and T. M. Keaveny, High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular boneJ. Biomechin press, (2000).

    Google Scholar 

  43. W. Roux, Der Kampf der Theile im Organismus, Leipzig, Engelmann (1881).

    Google Scholar 

  44. D. Ulrich, B. van Rietbergen, A. Laib and P. Rüegsegger, Load transfer analysis of the distal radius from in-vivo high-resolution CT-imagingJ. Biomech.32, 821–828 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. W. Pistoia, B. van Rietbergen, F. Eckstein, C. Lill, E. M. Lochmüller and P. Rüegsegger, Prediction of distal radius failure load with FE models based on 3D-pQCT scansProc. Bone Architecture and Competence of Bone(2000).

    Google Scholar 

  46. B. R. MacDonal, B. van Rietbergen, D. Newitt, T. Harris, H. Genant, C. Chestnut and S. Majumdar, The use of high resolution MR imaging and micro finite element analysis to measure changes in structural and mechanical properties of radial trabecular bone in postmenopausal womenProc. Bone Architecture and Competence of Bone(2000).

    Google Scholar 

  47. A. Kohlbrenner, B. Koller, S. Hämmerle and P. Rüegsegger, In vivo micro tomographyProc. Bone Architecture and Competence of Bone(2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Rietbergen, B. (2001). Micro-FE Analyses of Bone: State of the Art. In: Majumdar, S., Bay, B.K. (eds) Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone. Advances in Experimental Medicine and Biology, vol 496. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0651-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0651-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5177-1

  • Online ISBN: 978-1-4615-0651-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics