Skip to main content

Innate Lymphoid Cells in Immunity and Disease

  • Chapter
  • First Online:
Crossroads Between Innate and Adaptive Immunity IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 785))

Abstract

The family of innate lymphoid cells (ILCs) comprises of natural killer (NK) cells, Rorγt-dependent ILCs (lymphoid tissue inducer (LTi) cells, ILC22, and ILC17), and type 2 ILCs. Apart from a common requirement for inhibitor of DNA binding 2 (Id2) expression and common γ-chain (γc) signaling, the differentiation of ILC populations is regulated by distinct transcription factors. ILCs play fundamental roles in processes such as cytotoxicity, lymphoid organogenesis, intestinal homeostasis, immunity against infections, and wound healing. However, the dysregulation of ILCs has been implicated in autoimmune and inflammatory diseases. Here, we will review the recent advances in ILC development and their roles in immunity and disease, with a primary focus on type 2 ILCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12:21–27.

    PubMed  CAS  Google Scholar 

  2. Cherrier M, Ohnmacht C, Cording S, Eberl G. Development and function of intestinal innate lymphoid cells. Curr Opin Immunol. 2012.

    Google Scholar 

  3. Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol. 2006;7:1217–1224.

    PubMed  CAS  Google Scholar 

  4. Ribeiro VS, Hasan M, Wilson A et al. Cutting edge: Thymic NK cells develop independently from T cell precursors. J Immunol. 2010;185:4993–4997.

    PubMed  CAS  Google Scholar 

  5. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101.

    PubMed  CAS  Google Scholar 

  6. Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–1132.

    PubMed  CAS  Google Scholar 

  7. Cupedo T, Crellin NK, Papazian N et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol. 2009;10:66–74.

    PubMed  CAS  Google Scholar 

  8. Eyerich S, Eyerich K, Pennino D et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–3585.

    PubMed  CAS  Google Scholar 

  9. Cella M, Fuchs A, Vermi W et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–725.

    PubMed  CAS  Google Scholar 

  10. Luci C, Reynders A, Ivanov II et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol. 2009;10:75–82.

    PubMed  CAS  Google Scholar 

  11. Takatori H, Kanno Y, Watford WT et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 2009;206:35–41.

    PubMed  CAS  Google Scholar 

  12. Brinkmann V, Kristofic C. TCR-stimulated naive human CD4+ 45RO- T cells develop into effector cells that secrete IL-13, IL-5, and IFN-gamma, but no IL-4, and help efficient IgE production by B cells. J Immunol. 1995;154:3078–3087.

    PubMed  CAS  Google Scholar 

  13. Neill DR, Wong SH, Bellosi A et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464:1367–1370.

    PubMed  CAS  Google Scholar 

  14. Moro K, Yamada T, Tanabe M et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463:540–544.

    PubMed  CAS  Google Scholar 

  15. Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975;16:230–239.

    PubMed  CAS  Google Scholar 

  16. Di Santo JP. Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol. 2006;24:257–286.

    PubMed  Google Scholar 

  17. van den Brink MR, Palomba ML, Basse PH, Hiserodt JC. In situ localization of 3.2.3+ natural killer cells in tissues from normal and tumor-bearing rats. Cancer Res. 1991;51:4931–4936.

    PubMed  Google Scholar 

  18. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136:4480–4486.

    PubMed  CAS  Google Scholar 

  19. Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7:493–504.

    PubMed  CAS  Google Scholar 

  20. Kim MY, Anderson G, White A et al. OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3- inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40 ligand expression. J Immunol. 2005;174:6686–6691.

    PubMed  CAS  Google Scholar 

  21. Kim MY, Kim KS, McConnell F, Lane P. Lymphoid tissue inducer cells: architects of CD4 immune responses in mice and men. Clin Exp Immunol. 2009;157:20–26.

    PubMed  CAS  Google Scholar 

  22. Kim MY, Toellner KM, White A et al. Neonatal and adult CD4+ CD3- cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J Immunol. 2006;177:3074–3081.

    PubMed  CAS  Google Scholar 

  23. Sanos SL, Bui VL, Mortha A et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol. 2009;10:83–91.

    PubMed  CAS  Google Scholar 

  24. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29:958–970.

    PubMed  CAS  Google Scholar 

  25. Satoh-Takayama N, Dumoutier L, Lesjean-Pottier S et al. The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. J Immunol. 2009;183:6579–6587.

    PubMed  CAS  Google Scholar 

  26. Sawa S, Lochner M, Satoh-Takayama N et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12:320–326.

    PubMed  CAS  Google Scholar 

  27. Crellin NK, Trifari S, Kaplan CD, Satoh-Takayama N, Di Santo JP, Spits H. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity. 2010;33:752–764.

    PubMed  CAS  Google Scholar 

  28. Cella M, Otero K, Colonna M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA. 2010;107:10961–10966.

    PubMed  CAS  Google Scholar 

  29. Buonocore S, Ahern PP, Uhlig HH et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464:1371–1375.

    PubMed  CAS  Google Scholar 

  30. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med. 2010;207:281–290.

    PubMed  CAS  Google Scholar 

  31. Price AE, Liang HE, Sullivan BM et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA. 2010;107:11489–11494.

    PubMed  CAS  Google Scholar 

  32. Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 2010;31:407–413.

    PubMed  CAS  Google Scholar 

  33. Neill DR, McKenzie AN. Nuocytes and beyond: new insights into helminth expulsion. Trends Parasitol. 2011;27:214–221.

    PubMed  CAS  Google Scholar 

  34. Wong SH, Walker JA, Jolin HE et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol. 2012;13:229–236.

    PubMed  CAS  Google Scholar 

  35. Brickshawana A, Shapiro VS, Kita H, Pease LR. Lineage(-)Sca1+c-Kit(-)CD25+ cells are IL-33-responsive type 2 innate cells in the mouse bone marrow. J Immunol. 2011;187:5795–5804.

    PubMed  CAS  Google Scholar 

  36. Mjosberg JM, Trifari S, Crellin NK et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–1062.

    PubMed  Google Scholar 

  37. Yasuda K, Muto T, Kawagoe T et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci USA. 2012;109:3451–3456.

    PubMed  CAS  Google Scholar 

  38. Monticelli LA, Sonnenberg GF, Abt MC et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12:1045–1054.

    PubMed  CAS  Google Scholar 

  39. Chang YJ, Kim HY, Albacker LA et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011;12:631–638.

    PubMed  CAS  Google Scholar 

  40. Kim HY, Chang YJ, Subramanian S et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol. 2012;129:216–27. e1–6.

    PubMed  CAS  Google Scholar 

  41. Barlow JL, Bellosi A, Hardman CS et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012;129:191–8. e1–4.

    PubMed  CAS  Google Scholar 

  42. Wolterink RG, Kleinjan A, van Nimwegen M et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol. 2012;42:1106–1116.

    CAS  Google Scholar 

  43. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol. 2012;188:1503–1513.

    PubMed  CAS  Google Scholar 

  44. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity. 2012;36:451–463.

    PubMed  CAS  Google Scholar 

  45. Saenz SA, Siracusa MC, Perrigoue JG et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464:1362–1366.

    PubMed  CAS  Google Scholar 

  46. Kee BL. E and ID proteins branch out. Nat Rev Immunol. 2009;9:175–184.

    PubMed  CAS  Google Scholar 

  47. Yokota Y, Mansouri A, Mori S et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397:702–706.

    PubMed  CAS  Google Scholar 

  48. Engel I, Murre C. The function of E- and Id proteins in lymphocyte development. Nat Rev Immunol. 2001;1:193–199.

    PubMed  CAS  Google Scholar 

  49. Satoh-Takayama N, Lesjean-Pottier S, Vieira P et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors. J Exp Med. 2010;207:273–280.

    PubMed  CAS  Google Scholar 

  50. Cherrier M, Sawa S, Eberl G. Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med. 2012;209:729–740.

    PubMed  CAS  Google Scholar 

  51. Gascoyne DM, Long E, Veiga-Fernandes H et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol. 2009;10:1118–1124.

    PubMed  CAS  Google Scholar 

  52. Nakamori Y, Liu B, Ohishi K et al. Human bone marrow stromal cells simultaneously support B and T/NK lineage development from human haematopoietic progenitors: a principal role for flt3 ligand in lymphopoiesis. Br J Haematol. 2012

    Google Scholar 

  53. Martin-Fontecha A, Lord GM, Brady HJ. Transcriptional control of natural killer cell differentiation and function. Cell Mol Life Sci. 2011;68:3495–3503.

    PubMed  CAS  Google Scholar 

  54. Kallen J, Schlaeppi JM, Bitsch F, Delhon I, Fournier B. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J Biol Chem. 2004;279:14033–14038.

    PubMed  CAS  Google Scholar 

  55. Jin L, Martynowski D, Zheng S, Wada T, Xie W, Li Y. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Mol Endocrinol. 2010;24:923–929.

    PubMed  CAS  Google Scholar 

  56. Sun Z, Unutmaz D, Zou YR et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science. 2000;288:2369–2373.

    PubMed  CAS  Google Scholar 

  57. Schmutz S, Bosco N, Chappaz S et al. Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells. J Immunol. 2009;183:2217–2221.

    PubMed  CAS  Google Scholar 

  58. Kang J, Coles M. IL-7: The global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol. 2012

    Google Scholar 

  59. Possot C, Schmutz S, Chea S et al. Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat Immunol. 2011;12:949–958.

    PubMed  CAS  Google Scholar 

  60. Tachibana M, Tenno M, Tezuka C, Sugiyama M, Yoshida H, Taniuchi I. Runx1/Cbfbeta2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J Immunol. 2011;186:1450–1457.

    PubMed  CAS  Google Scholar 

  61. Aliahmad P, de la Torre B, Kaye J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol. 2010;11:945–952.

    PubMed  CAS  Google Scholar 

  62. Sawa S, Cherrier M, Lochner M et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science. 2010;330:665–669.

    PubMed  CAS  Google Scholar 

  63. Reynders A, Yessaad N, Vu Manh TP et al. Identity, regulation and in vivo function of gut NKp46+RORgammat+ and NKp46+RORgammat- lymphoid cells. EMBO J. 2011;30:2934–2947.

    PubMed  CAS  Google Scholar 

  64. Vonarbourg C, Mortha A, Bui VL et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity. 2010;33:736–751.

    PubMed  CAS  Google Scholar 

  65. Qiu J, Heller JJ, Guo X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. 2012;36:92–104.

    PubMed  CAS  Google Scholar 

  66. Kiss EA, Vonarbourg C, Kopfmann S et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science. 2011;334:1561–1565.

    PubMed  CAS  Google Scholar 

  67. Lee JS, Cella M, McDonald KG et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2012;13:144–151.

    CAS  Google Scholar 

  68. Veldhoen M, Hirota K, Westendorf AM et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453:106–109.

    PubMed  CAS  Google Scholar 

  69. Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A. Cutting edge: Natural helper cells derive from lymphoid progenitors. J Immunol. 2011;187:5505–5509.

    PubMed  CAS  Google Scholar 

  70. Sandy AR, Jones M, Maillard I. Notch signaling and development of the hematopoietic system. Adv Exp Med Biol. 2012;727:71–88.

    PubMed  CAS  Google Scholar 

  71. Dzhagalov I, Zhang N, He YW. The roles of orphan nuclear receptors in the development and function of the immune system. Cell Mol Immunol. 2004;1:401–407.

    PubMed  CAS  Google Scholar 

  72. Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.

    PubMed  Google Scholar 

  73. SIDMAN RL, LANE PW, DICKIE MM. Staggerer, a new mutation in the mouse affecting the cerebellum. Science. 1962;137:610–612.

    PubMed  CAS  Google Scholar 

  74. Dussault I, Fawcett D, Matthyssen A, Bader JA, Giguere V. Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer. Mech Dev. 1998;70:147–153.

    PubMed  CAS  Google Scholar 

  75. Jaradat M, Stapleton C, Tilley SL et al. Modulatory role for retinoid-related orphan receptor alpha in allergen-induced lung inflammation. Am J Respir Crit Care Med. 2006;174:1299–1309.

    PubMed  CAS  Google Scholar 

  76. Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.

    PubMed  CAS  Google Scholar 

  77. Vonarbourg C, Diefenbach A. Multifaceted roles of interleukin-7 signaling for the development and function of innate lymphoid cells. Semin Immunol. 2012

    Google Scholar 

  78. Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone. 2010;46:281–285.

    PubMed  CAS  Google Scholar 

  79. Welch PA, Burrows PD, Namen A, Gillis S, Cooper MD. Bone marrow stromal cells and interleukin-7 induce coordinate expression of the BP-1/6C3 antigen and pre-B cell growth. Int Immunol. 1990;2:697–705.

    PubMed  CAS  Google Scholar 

  80. Liang HE, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol. 2012;13:58–66.

    CAS  Google Scholar 

  81. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–640.

    PubMed  CAS  Google Scholar 

  82. Smyth MJ, Cretney E, Kelly JM et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42:501–510.

    PubMed  CAS  Google Scholar 

  83. Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L. Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol. 2005;26:668–675.

    PubMed  CAS  Google Scholar 

  84. Gillard GO, Bivas-Benita M, Hovav AH et al. Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes. PLoS Pathog. 2011;7:e1002141.

    PubMed  CAS  Google Scholar 

  85. Vivier E, Raulet DH, Moretta A et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49.

    PubMed  CAS  Google Scholar 

  86. Kelly KA, Scollay R. Seeding of neonatal lymph nodes by T cells and identification of a novel population of CD3-CD4+ cells. Eur J Immunol. 1992;22:329–334.

    PubMed  CAS  Google Scholar 

  87. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol. 2004;5:64–73.

    PubMed  CAS  Google Scholar 

  88. Eberl G, Littman DR. The role of the nuclear hormone receptor RORgammat in the development of lymph nodes and Peyer’s patches. Immunol Rev. 2003;195:81–90.

    PubMed  CAS  Google Scholar 

  89. Eberl G, Lochner M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2009;2:478–485.

    PubMed  CAS  Google Scholar 

  90. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10:664–674.

    PubMed  Google Scholar 

  91. Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168:57–64.

    PubMed  CAS  Google Scholar 

  92. Bouskra D, Brezillon C, Berard M et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–510.

    PubMed  CAS  Google Scholar 

  93. Scandella E, Bolinger B, Lattmann E et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 2008;9:667–675.

    PubMed  CAS  Google Scholar 

  94. Kim MY, McConnell FM, Gaspal FM et al. Function of CD4+CD3- cells in relation to B- and T-zone stroma in spleen. Blood. 2007;109:1602–1610.

    PubMed  CAS  Google Scholar 

  95. Lane P, Kim MY, Withers D et al. Lymphoid tissue inducer cells in adaptive CD4 T cell dependent responses. Semin Immunol. 2008;20:159–163.

    PubMed  CAS  Google Scholar 

  96. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–321.

    PubMed  CAS  Google Scholar 

  97. Hsu HC, Yang P, Wang J et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008;9:166–175.

    PubMed  CAS  Google Scholar 

  98. Mizutani N, Goshima H, Nabe T, Yoshino S. Complement C3a-Induced IL-17 Plays a Critical Role in an IgE-Mediated Late-Phase Asthmatic Response and Airway Hyperresponsiveness via Neutrophilic Inflammation in Mice. J Immunol. 2012.

    Google Scholar 

  99. Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol. 2011;23:159–163.

    PubMed  CAS  Google Scholar 

  100. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 2008;29:947–957.

    PubMed  CAS  Google Scholar 

  101. Takahashi K, Hirose K, Kawashima S et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation. J Allergy Clin Immunol. 2011;128:1067–1076.

    PubMed  CAS  Google Scholar 

  102. Kim S, Han S, Withers DR et al. CD117 CD3 CD56 OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur J Immunol. 2011;41:1563–1572.

    PubMed  CAS  Google Scholar 

  103. Zheng Y, Valdez PA, Danilenko DM et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282–289.

    PubMed  CAS  Google Scholar 

  104. Cox JH, Kljavin NM, Ota N et al. Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol. 2012;5:99–109.

    PubMed  CAS  Google Scholar 

  105. Fallon PG, Ballantyne SJ, Mangan NE et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med. 2006;203:1105–1116.

    PubMed  CAS  Google Scholar 

  106. Fort MM, Cheung J, Yen D et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15:985–995.

    PubMed  CAS  Google Scholar 

  107. Lee J, Ho WH, Maruoka M et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem. 2001;276:1660–1664.

    PubMed  CAS  Google Scholar 

  108. Saadoun D, Terrier B, Cacoub P. Interleukin-25: key regulator of inflammatory and autoimmune diseases. Curr Pharm Des. 2011;17:3781–3785.

    PubMed  CAS  Google Scholar 

  109. Angkasekwinai P, Park H, Wang YH et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med. 2007;204:1509–1517.

    PubMed  CAS  Google Scholar 

  110. Ikeda K, Nakajima H, Suzuki K et al. Mast cells produce interleukin-25 upon Fc epsilon RI-mediated activation. Blood. 2003;101:3594–3596.

    PubMed  CAS  Google Scholar 

  111. Kang CM, Jang AS, Ahn MH et al. Interleukin-25 and interleukin-13 production by alveolar macrophages in response to particles. Am J Respir Cell Mol Biol. 2005;33:290–296.

    PubMed  CAS  Google Scholar 

  112. Corrigan CJ, Wang W, Meng Q et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J Allergy Clin Immunol. 2011;128:116–124.

    PubMed  CAS  Google Scholar 

  113. Claudio E, Sonder SU, Saret S et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol. 2009;182:1617–1630.

    PubMed  CAS  Google Scholar 

  114. Swaidani S, Bulek K, Kang Z et al. The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J Immunol. 2009;182:1631–1640.

    PubMed  CAS  Google Scholar 

  115. Townsend MJ, Fallon PG, Matthews DJ, Jolin HE, McKenzie AN. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J Exp Med. 2000;191:1069–1076.

    PubMed  CAS  Google Scholar 

  116. Lohning M, Stroehmann A, Coyle AJ et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA. 1998;95:6930–6935.

    PubMed  CAS  Google Scholar 

  117. Yanagisawa K, Naito Y, Kuroiwa K et al. The expression of ST2 gene in helper T cells and the binding of ST2 protein to myeloma-derived RPMI8226 cells. J Biochem. 1997;121:95–103.

    PubMed  CAS  Google Scholar 

  118. Schmitz J, Owyang A, Oldham E et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–490.

    PubMed  CAS  Google Scholar 

  119. Hong YS, Moon SJ, Joo YB et al. Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis. J Korean Med Sci. 2011;26:1132–1139.

    PubMed  CAS  Google Scholar 

  120. Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med. 2009;179:772–781.

    PubMed  CAS  Google Scholar 

  121. Kondo Y, Yoshimoto T, Yasuda K et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol. 2008;20:791–800.

    PubMed  CAS  Google Scholar 

  122. Marvie P, Lisbonne M, L’helgoualc’h A et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med. 2010;14:1726–1739.

    PubMed  CAS  Google Scholar 

  123. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel “alarmin”? PLoS One. 2008;3:e3331.

    PubMed  Google Scholar 

  124. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–110.

    PubMed  CAS  Google Scholar 

  125. Wills-Karp M, Rani R, Dienger K et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med. 2012;209:607–622.

    PubMed  CAS  Google Scholar 

  126. McKenzie GJ, Bancroft A, Grencis RK, McKenzie AN. A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr Biol. 1998;8:339–342.

    PubMed  CAS  Google Scholar 

  127. Anthony RM, Rutitzky LI, Urban JFJ, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7:975–987.

    PubMed  CAS  Google Scholar 

  128. Bancroft AJ, McKenzie AN, Grencis RK. A critical role for IL-13 in resistance to intestinal nematode infection. J Immunol. 1998;160:3453–3461.

    PubMed  CAS  Google Scholar 

  129. Oliphant CJ, Barlow JL, McKenzie AN. Insights into the initiation of type 2 immune responses. Immunology. 2011;134:378–385.

    PubMed  CAS  Google Scholar 

  130. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M. Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med. 1992;176:1319–1326.

    PubMed  CAS  Google Scholar 

  131. Goswami R, Kaplan MH. A brief history of IL-9. J Immunol. 2011;186:3283–3288.

    PubMed  CAS  Google Scholar 

  132. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 2006;16:3–10.

    PubMed  CAS  Google Scholar 

  133. Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med. 2006;203:1435–1446.

    PubMed  CAS  Google Scholar 

  134. Enomoto Y, Orihara K, Takamasu T et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol. 2009;124:913–920. e1–7.

    PubMed  CAS  Google Scholar 

  135. Ingram JL, Rice A, Geisenhoffer K, Madtes DK, Bonner JC. Interleukin-13 stimulates the proliferation of lung myofibroblasts via a signal transducer and activator of transcription-6-dependent mechanism: a possible mechanism for the development of airway fibrosis in asthma. Chest. 2003;123:422S–424S.

    PubMed  CAS  Google Scholar 

  136. Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM. Interleukin-13 ­modulates collagen homeostasis in human skin and ­keloid fibroblasts. J Pharmacol Exp Ther. 2000;292:988–994.

    PubMed  CAS  Google Scholar 

  137. Monticelli LA, Sonnenberg GF, Artis D. Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol. 2012

    Google Scholar 

  138. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12:99–106.

    PubMed  CAS  Google Scholar 

  139. Lee CG, Homer RJ, Zhu Z et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194:809–821.

    PubMed  CAS  Google Scholar 

  140. Lindemann D, Racke K. Glucocorticoid inhibition of interleukin-4 (IL-4) and interleukin-13 (IL-13) induced up-regulation of arginase in rat airway fibroblasts. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:546–550.

    PubMed  CAS  Google Scholar 

  141. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–785.

    PubMed  CAS  Google Scholar 

  142. Chiaramonte MG, Cheever AW, Malley JD, Donaldson DD, Wynn TA. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology. 2001;34:273–282.

    PubMed  CAS  Google Scholar 

  143. Kaviratne M, Hesse M, Leusink M et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol. 2004;173:4020–4029.

    PubMed  CAS  Google Scholar 

  144. Ohnishi T, Sur S, Collins DS, Fish JE, Gleich GJ, Peters SP. Eosinophil survival activity identified as interleukin-5 is associated with eosinophil recruitment and degranulation and lung injury twenty-four hours after segmental antigen lung challenge. J Allergy Clin Immunol. 1993;92:607–615.

    PubMed  CAS  Google Scholar 

  145. Chen F, Liu Z, Wu W et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med. 2012;18:260–266.

    PubMed  CAS  Google Scholar 

  146. Xing WW, Zou MJ, Liu S, Xu T, Wang JX, Xu DG. Interleukin-22 protects against acute alcohol-induced hepatotoxicity in mice. Biosci Biotechnol Biochem. 2011;75:1290–1294.

    PubMed  CAS  Google Scholar 

  147. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28:454–467.

    PubMed  CAS  Google Scholar 

  148. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10:838–848.

    PubMed  CAS  Google Scholar 

  149. Shale M, Ghosh S. Beyond TNF, Th1 and Th2 in inflammatory bowel disease. Gut. 2008;57:1349–1351.

    PubMed  CAS  Google Scholar 

  150. O’Reilly S, Hugle T, van Laar JM. T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford). 2012.

    Google Scholar 

  151. Ballantyne SJ, Barlow JL, Jolin HE et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol. 2007;120:1324–1331.

    PubMed  CAS  Google Scholar 

  152. Moffatt MF, Gut IG, Demenais F et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–1221.

    PubMed  CAS  Google Scholar 

  153. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175–190.

    PubMed  CAS  Google Scholar 

  154. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–456.

    PubMed  CAS  Google Scholar 

  155. Fattouh R, Jordana M. TGF-beta, eosinophils and IL-13 in allergic airway remodeling: a critical appraisal with therapeutic considerations. Inflamm Allergy Drug Targets. 2008;7:224–236.

    PubMed  CAS  Google Scholar 

  156. Warringa RA, Schweizer RC, Maikoe T, Kuijper PH, Bruijnzeel PL, Koendermann L. Modulation of eosinophil chemotaxis by interleukin-5. Am J Respir Cell Mol Biol. 1992;7:631–636.

    PubMed  CAS  Google Scholar 

  157. Shi HZ, Xiao CQ, Zhong D et al. Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med. 1998;157:204–209.

    PubMed  CAS  Google Scholar 

  158. Camelo A, Barlow JL, Drynan LF et al. Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13. J Gastroenterol. 2012.

    Google Scholar 

  159. Olman MA. Epithelial cell modulation of airway fibrosis in asthma. Am J Respir Cell Mol Biol. 2003;28:125–128.

    PubMed  CAS  Google Scholar 

  160. Halim TY, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity. 2012;37:463-474.

    PubMed  CAS  Google Scholar 

  161. Hoyler T, Klose CS, Souabni A et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37:634-648.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. J. McKenzie Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hwang, Y.Y., McKenzie, A.N.J. (2013). Innate Lymphoid Cells in Immunity and Disease. In: Katsikis, P., Schoenberger, S., Pulendran, B. (eds) Crossroads Between Innate and Adaptive Immunity IV. Advances in Experimental Medicine and Biology, vol 785. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6217-0_2

Download citation

Publish with us

Policies and ethics