Skip to main content

The Blood-Retina Barrier

Tight Junctions and Barrier Modulation

  • Chapter
  • First Online:
Biology and Regulation of Blood-Tissue Barriers

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 763))

Abstract

The blood-retina barrier (BRB) is composed of both an inner and an outer barrier. The outer BRB refers to the barrier formed at the retinal pigment epithelial (RPE) cell layer and functions, in part, to regulate the movement of solutes and nutrients from the choroid to the sub-retinal space. In contrast, the inner BRB, similar to the blood brain barrier (BBB) is located in the inner retinal microvasculature and comprises the microvascular endothelium which line these vessels. The tight junctions located between these cells mediate highly selective diffusion of molecules from the blood to the retina and the barrier is essential in maintaining retinal homeostasis. In this chapter, we summarize the key differences between the iBRB and oBRB and outline the molecular constituents of the tight junctions associated with the iBRB. We also describe a process for modulation of the iBRB to enhance systemic delivery of therapeutics to the retina, a technology which may pave the way for safer and more effective therapies for retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forrester JV, Dick AD, McMenamin PG, eds. The Eye. Philadelphia: Elsevier Health Sciences, 2001.

    Google Scholar 

  2. Antonetti DA, Lieth E, Barber AJ, Gardner TW. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin Ophthalmol 1999; 14:240–8.

    Article  CAS  PubMed  Google Scholar 

  3. Marmorstein AD, Finnemann SC, Bonilha VL, Rodriguez-Boulan E. Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. Ann N Y Acad Sci 1998; 857:1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Marneros AG, Fan J, Yokoyama Y et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol 2005; 167:1451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bazzoni G, Martinez-Estrada OM, Orsenigo F et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 2000; 275:20520–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bazzoni G, Martinez-Estrada OM, Mueller F et al. Homophilic interaction of junctional adhesion molecule. J Biol Chem 2000; 275:30970–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bazzoni G. The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 2003; 15:525–30.

    Article  CAS  PubMed  Google Scholar 

  8. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869–901.

    Article  CAS  PubMed  Google Scholar 

  9. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17:375–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakakibara A, Furuse M, Saitou M et al. Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 1997; 137:1393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fanning AS, Anderson JM. PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immunol 1998; 228:209–33.

    CAS  PubMed  Google Scholar 

  12. Riesen FK, Rothen-Rutishauser B, Wunderli-A llenspach H. A ZO1-GFP fusion protein to study the dynamics of tight junctions in living cells. Histochem Cell Biol 2002; 117:307–15.

    Article  CAS  PubMed  Google Scholar 

  13. Zahraoui A, Louvard D, Galli T. Tight junction, a platform for trafficking and signaling protein complexes. J Cell Biol 2000; 151:F31–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zahraoui A. [Tight junctions, a platform regulating cell proliferation and polarity]. Med Sci (Paris) 2004; 20:580–5.

    Article  Google Scholar 

  15. Balda MS, Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 2000; 19:2024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003; 160:423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vinores SA, Campochiaro PA, Lee A et al. Localization of blood-retinal barrier breakdown in human pathologic specimens by immunohistochemical staining for albumin. Lab Invest 1990; 62:742–50.

    CAS  PubMed  Google Scholar 

  18. Vinores SA, Kuchle M, Derevjanik NL et al. Blood-retinal barrier breakdown in retinitis pigmentosa: light and electron microscopic immunolocalization. Histol Histopathol 1995; 10:913–23.

    CAS  PubMed  Google Scholar 

  19. Dorchy H. Characterization of early stages of diabetic retinopathy. Importance of the breakdown of the blood-retinal barrier. Diabetes Care 1993; 16:1212–4.

    Article  CAS  PubMed  Google Scholar 

  20. Dorchy H, Toussaint D. Fluorescein leakage: First sign of juvenile diabetic retinopathy. Lancet 1978; 1:1200.

    Article  CAS  PubMed  Google Scholar 

  21. Carney MD, Paylor RR, Cunha-Vaz JG et al. Iatrogenic choroidal neovascularization in sickle cell retinopathy. Ophthalmology 1986; 93:1163–8.

    Article  CAS  PubMed  Google Scholar 

  22. Mitic LL, Schneeberger EE, Fanning AS, Anderson JM. Connexin-occludin chimeras containing the ZO-binding domain of occludin localize at MDCK tight junctions and NRK cell contacts. J Cell Biol 1999; 146:683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furuse M, Hirase T, Itoh M et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123:1777–88.

    Article  CAS  PubMed  Google Scholar 

  24. Furuse M, Itoh M, Hirase T et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127:1617–26.

    Article  CAS  PubMed  Google Scholar 

  25. González-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 2000; 11:315–24.

    Article  PubMed  Google Scholar 

  26. Gonzalez-Mariscal L, Namorado MC, Martin D et al. Tight junction proteins ZO-1, ZO-2, and occludin along isolated renal tubules. Kidney Int 2000; 57:2386–402.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol 2003; 81:1–44.

    Article  CAS  PubMed  Google Scholar 

  28. Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev 2005; 57:883.

    Article  CAS  PubMed  Google Scholar 

  29. McCarthy KM, Skare IB, Stankewich MC et al. Occludin is a functional component of the tight junction. J Cell Sci 1996; 109:2287–98.

    CAS  PubMed  Google Scholar 

  30. Brankin B, Campbell M, Canning P et al. Endostatin modulates VEGF-mediated barrier dysfunction in the retinal microvascular endothelium. Exp Eye Res 2005; 81:22–31.

    Article  CAS  PubMed  Google Scholar 

  31. Campbell M, Collery R, McEvoy A et al. Involvement of MAPKs in endostatin-mediated regulation of blood-retinal barrier function. Curr Eye Res 2006; 31:1033–45.

    Article  CAS  PubMed  Google Scholar 

  32. Antonetti DA, Barber AJ, Hollinger LA et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999; 274:23463–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wong V. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol 1997; 273:C1859–67.

    Article  CAS  PubMed  Google Scholar 

  34. Staddon JM, Smales C, Schulze C et al. p120, a p120-related protein (p100), and the cadherin/catenin complex. J Cell Biol 1995; 130:369–81.

    Article  CAS  PubMed  Google Scholar 

  35. Kale G, Naren AP, Sheth P, Rao RK. Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochem Biophys Res Commun 2003; 302:324–9.

    Article  CAS  PubMed  Google Scholar 

  36. Rao RK, Baker RD, Baker SS et al. Oxidant-induced disruption of intestinal epithelial barrier function: role of protein tyrosine phosphorylation. Am J Physiol 1997; 273:G812–23.

    CAS  PubMed  Google Scholar 

  37. Saitou M, Fujimoto K, Doi Y et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 1998; 141:397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986; 103:755–66.

    Article  CAS  PubMed  Google Scholar 

  39. Woods DF, Bryant PJ. ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev 1993; 44:85–9.

    Article  CAS  PubMed  Google Scholar 

  40. Weng Z, Rickles RJ, Feng S et al. Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Mol Cell Biol 1995; 15:5627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balda MS, Anderson JM. Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Physiol 1993; 264:C918–24.

    Article  CAS  PubMed  Google Scholar 

  42. Gottardi CJ, Arpin M, Fanning AS, Louvard D. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci USA 1996; 93:10779–84.

    Article  CAS  PubMed  Google Scholar 

  43. Itoh M, Nagafuchi A, Moroi S, Tsukita S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 1997; 138:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itoh M, Nagafuchi A, Yonemura S et al. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993; 121:491–502.

    Article  CAS  PubMed  Google Scholar 

  45. Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 1999; 274:5981–6.

    Article  CAS  PubMed  Google Scholar 

  46. Giepmans BN, Moolenaar WH. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 1998; 8:931–4.

    Article  CAS  PubMed  Google Scholar 

  47. Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003; 160:423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kausalya PJ, Reichert M, Hunziker W. Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cells. FEBS Lett 2001; 505:92–6.

    Article  CAS  PubMed  Google Scholar 

  49. Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998; 153:1767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tserentsoodol N, Shin BC, Suzuki T, Takata K. Colocalization of tight junction proteins, occludin and ZO-1, and glucose transporter GLUT1 in cells of the blood-ocular barrier in the mouse eye. Histochem Cell Biol 1998; 110:543–51.

    Article  CAS  PubMed  Google Scholar 

  51. Campbell M, Humphries M, Kennan A et al. Aberrant retinal tight junction and adherens junction protein expression in an animal model of autosomal recessive Retinitis pigmentosa: the Rho(-/-) mouse. Exp Eye Res 2006; 83:484–92.

    Article  CAS  PubMed  Google Scholar 

  52. Campbell M, Humphries M, Kenna P et al. Altered expression and interaction of adherens junction proteins in the developing OLM of the Rho(-/-) mouse. Exp Eye Res 2007; 85:714–20.

    Article  CAS  PubMed  Google Scholar 

  53. Freddo TF. Intercellular junctions of the iris epithelia in Macaca mulatta. Invest Ophthalmol Vis Sci 1984; 25:1094–104.

    CAS  PubMed  Google Scholar 

  54. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999; 274:35179–85.

    Article  CAS  PubMed  Google Scholar 

  55. D’Atri F, Nadalutti F, Citi S. Evidence for a functional interaction between cingulin and ZO-1 in cultured cells. J Biol Chem 2002; 277:27757–64.

    Article  CAS  Google Scholar 

  56. Betanzos A, Huerta M, Lopez-Bayghen E et al. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292:51–66.

    Article  CAS  PubMed  Google Scholar 

  57. Jaramillo BE, Ponce A, Moreno J et al. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp Cell Res 2004; 297:247–58.

    Article  CAS  PubMed  Google Scholar 

  58. Haskins J, Gu L, Wittchen ES et al. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Inoko A, Itoh M, Tamura A et al. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells 2003; 8:837–45.

    Article  CAS  PubMed  Google Scholar 

  60. Islas S, Vega J, Ponce L, Gonzalez-Mariscal L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002; 274:138–48.

    Article  CAS  PubMed  Google Scholar 

  61. Furuse M, Fujita K, Hiiragi T et al. Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141:1539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or-2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 1998; 143:391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Inai T, Kobayashi J, Shibata Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 1999; 78:849–55.

    Article  CAS  PubMed  Google Scholar 

  64. Nitta T, Hata M, Gotoh S et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4:877–86.

    Article  CAS  PubMed  Google Scholar 

  66. Swaroop A, Chew EY, Rickman CB et al. Unraveling a multifactorial late-onset disease: from genetic susceptibility to diseasemechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 2009, 10:19.43.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Resnikoff S, Pascolini D, Etya’ale D et al. Global data on visual impairment in the year 2002. Bull World Health Organ 2004; 82:844–51.

    PubMed  PubMed Central  Google Scholar 

  68. CATT Research Group. Martin DF, Maguire MG, Ying GS et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 2011; 364:1897–908.

    Article  Google Scholar 

  69. Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review (2007) Retina. Sep; 27(7):816–24.

    Article  Google Scholar 

  70. Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 2006; 6:494–500.

    Article  CAS  PubMed  Google Scholar 

  71. Piontek J, Winkler L, Wolburg H et al. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 2008; 22:146–58.

    Article  CAS  PubMed  Google Scholar 

  72. Campbell M, Kiang AS, Kenna PF et al. RNAi-mediated reversible opening of the blood-brain barrier. 2008. J Gene Med. Aug;10(8):930–47.

    Article  CAS  Google Scholar 

  73. Campbell M, Nguyen ATH, Kiang AS et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci USA 2009; 106:17817–22.

    Article  CAS  PubMed  Google Scholar 

  74. Maguire AM, Simonelli F, Pierce EA et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bainbridge JW, Smith AJ, Barker SS et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008; 358:2231–9.

    Article  CAS  PubMed  Google Scholar 

  76. Hauswirth WW, Aleman TS, Kaushal S et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19:979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Foust KD, Nurre E, Montgomery CL et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27:59–65.

    Article  CAS  PubMed  Google Scholar 

  78. Campbell M, Humphries MM, Nguyen ATH et al. Systemic low molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med 2011; 3:235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Campbell, M., Humphries, P. (2013). The Blood-Retina Barrier. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_3

Download citation

Publish with us

Policies and ethics