Skip to main content

Modulation of the Wound Healing Response Through Oxidation Active Materials

  • Chapter
  • First Online:

Abstract

Oxidative stress originally gained attention as key pathological process in a variety of disease states and conditions (e.g., acute lung injury, sepsis, chronic degenerative neurological diseases). Furthermore, it oxidative stress has also been identified as one of the key mechanisms to tissue toxicity brought on by nanomaterials and implant biomaterials. Yet, despite these origins, newer research has started to view oxidative stress and not simply pathology, but as a physiologically relevant signaling system, working in concert with the more traditional cell signaling cascades (e.g., growth factor signaling, cytokine release). As a result, a reinvigoration of research in regenerative medicine has begun looking at oxidative stress as a potential tuning mechanism to enhance the natural wound healing process. In this chapter, a summary of the biological aspects of oxidative stress is presented as well as a current state of the art approaches used in designing biomaterials to actively participate in the oxidative stress signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hancock, J.T.: The role of redox mechanisms in cell signalling. Mol. Biotechnol. 43(2), 162–166 (2009)

    Article  CAS  Google Scholar 

  2. Muzykantov, V.R.: Delivery of antioxidant enzyme proteins to the lung. Antioxid. Redox Signal. 3(1), 39–62 (2001)

    Article  CAS  Google Scholar 

  3. Cataldi, A.: Cell responses to oxidative stressors. Curr. Pharm. Des. 16(12), 1387–1395 (2010)

    Article  CAS  Google Scholar 

  4. Ogasawara, M.A., Zhang, H.: Redox regulation and its emerging roles in stem cells and stem-like cancer cells. Antioxid. Redox Signal. 11(5), 1107–1122 (2009)

    Article  CAS  Google Scholar 

  5. Sharma, R.K., Zhou, Q., Netland, P.A.: Effect of oxidative preconditioning on neural progenitor cells. Brain Res. 1243, 19–26 (2008)

    Article  CAS  Google Scholar 

  6. Smith, J., et al.: Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc. Natl Acad. Sci. USA 97(18), 10032–10037 (2000)

    Article  CAS  Google Scholar 

  7. Stanic, B., Katsuyama, M., Miller Jr., F.J.: An oxidized extracellular oxidation-reduction state increases Nox1 expression and proliferation in vascular smooth muscle cells via epidermal growth factor receptor activation. Arterioscler. Thromb. Vasc. Biol. 30, 2234–2241 (2010)

    Article  CAS  Google Scholar 

  8. Delles, C., Miller, W.H., Dominiczak, A.F.: targeting reactive oxygen species in hypertension. Antioxid. Redox Signal. 10(6), 1061–1077 (2008)

    Article  CAS  Google Scholar 

  9. Heinecke, J.W.: Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141(1), 1–15 (1998)

    Article  CAS  Google Scholar 

  10. Wei, Z., et al.: Simulated ischemia in flow-adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circ. Res. 85(8), 682–689 (1999)

    Article  CAS  Google Scholar 

  11. Chow, C.W., et al.: Oxidative stress and acute lung injury. Am. J. Respir. Cell Mol. Biol. 29(4), 427–431 (2003)

    Article  CAS  Google Scholar 

  12. Kirkham, P.: Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochem. Soc. Trans. 35(Pt 2), 284–287 (2007)

    CAS  Google Scholar 

  13. Barnham, K.J., Masters, C.L., Bush, A.I.: Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3(3), 205–214 (2004)

    Article  CAS  Google Scholar 

  14. Finkel, T., Holbrook, N.J.: Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239–247 (2000)

    Article  CAS  Google Scholar 

  15. Jomova, K., Valko, M.: Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3), 65–87 (2011)

    Article  CAS  Google Scholar 

  16. Muzykantov, V.R.: Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control. Release 71(1), 1–21 (2001)

    Article  CAS  Google Scholar 

  17. Parkhurs, R.M., Skinner, W.A.: Oxidation products of vitamin E and its model 6-hydroxy-2,2,5,7,8-pentamethylchroman.8. oxidation with benzoyl peroxide. J. Organic Chem. 31(4), 1248–51 (1966)

    Article  Google Scholar 

  18. Villano, D., et al.: Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71(1), 230–235 (2007)

    Article  CAS  Google Scholar 

  19. Stenesh, J.: Biochemistry, p. xxvii, 568. Plenum, New York (1998)

    Google Scholar 

  20. Papp, L.V., et al.: From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal. 9(7), 775–806 (2007)

    Article  CAS  Google Scholar 

  21. Lu, J., Holmgren, A.: Selenoproteins. J. Biol. Chem. 284(2), 723–727 (2009)

    Article  CAS  Google Scholar 

  22. Manevich, Y., Fisher, A.B.: Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic. Biol. Med. 38(11), 1422–1432 (2005)

    Article  CAS  Google Scholar 

  23. Rhee, S.G., Chae, H.Z., Kim, K.: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38(12), 1543–1552 (2005)

    Article  CAS  Google Scholar 

  24. Hood*, E., Simone, E., Wattamwar, P.P., Dziubla, T.D., Muzykantov, V.R.: Polymeric Carriers for Antioxidant Enzymes and Small Molecules. Review article. Nanomedicine (Accepted)

    Google Scholar 

  25. Muro, S., et al.: Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am. J. Physiol. Cell Physiol. 285(5), C1339–C1347 (2003)

    CAS  Google Scholar 

  26. Dziubla, T.D., Karim, A., Muzykantov, V.R.: Polymer nanocarriers protecting active enzyme cargo against proteolysis. J. Control. Release 102(2), 427–439 (2005)

    Article  CAS  Google Scholar 

  27. Martin, P.: Wound healing–aiming for perfect skin regeneration. Science 276(5309), 75–81 (1997)

    Article  CAS  Google Scholar 

  28. Nathan, C.: Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6(3), 173–182 (2006)

    Article  CAS  Google Scholar 

  29. Hubner, G., et al.: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8(7), 548–556 (1996)

    Article  CAS  Google Scholar 

  30. Lovvorn, H.N., et al.: Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J. Pediatr. Surg. 34(1), 218–223 (1999)

    Article  Google Scholar 

  31. Sen, C.K., Roy, S.: Redox signals in wound healing. Biochimica Et Biophysica Acta-General Subjects 1780(11), 1348–1361 (2008)

    Article  CAS  Google Scholar 

  32. Gorlach, A.: Redox regulation of the coagulation cascade. Antioxid. Redox Signal. 7(9–10), 1398–1404 (2005)

    Article  Google Scholar 

  33. Klyubin, I.V., Kirpichnikova, K.M., Gamaley, I.A.: Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol. 70(4), 347–351 (1996)

    CAS  Google Scholar 

  34. Niethammer, P., et al.: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249), 996–999 (2009)

    Article  CAS  Google Scholar 

  35. Hattori, H., et al.: Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc. Natl Acad. Sci. USA 107(8), 3546–3551 (2010)

    Article  CAS  Google Scholar 

  36. Nakamura, H., et al.: Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc. Natl Acad. Sci. USA 98(26), 15143–15148 (2001)

    Article  CAS  Google Scholar 

  37. Nathan, C.F.: Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest. 80(6), 1550–1560 (1987)

    Article  CAS  Google Scholar 

  38. Babior, B.M.: Phagocytes and oxidative stress. Am. J. Med. 109(1), 33–44 (2000)

    Article  CAS  Google Scholar 

  39. Baggiolini, M., et al.: Activation of neutrophil leukocytes – chemoattractant receptors and respiratory burst. FASEB J. 7(11), 1004–1010 (1993)

    CAS  Google Scholar 

  40. Leto, T.L., Geiszt, M.: Role of Nox family NADPH oxidases in host defense. Antioxid. Redox Signal. 8(9–10), 1549–1561 (2006)

    Article  CAS  Google Scholar 

  41. Meischl, C., Roos, D.: The molecular basis of chronic granulomatous disease. Springer Semin. Immunopathol. 19(4), 417–434 (1998)

    Article  CAS  Google Scholar 

  42. Shi, M.M., et al.: Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunology 97(2), 309–315 (1999)

    Article  CAS  Google Scholar 

  43. Shi, M.M., Godleski, J.J., Paulauskis, J.D.: Regulation of macrophage inflammatory protein-1 alpha mRNA by oxidative stress. J. Biol. Chem. 271(10), 5878–5883 (1996)

    Article  CAS  Google Scholar 

  44. Marumo, T., et al.: Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappa B and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96(7), 2361–2367 (1997)

    Article  CAS  Google Scholar 

  45. Soneja, A., Drews, M., Malinski, T.: Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 57(Suppl), 108–119 (2005)

    Google Scholar 

  46. Driscoll, K.E.: TNFalpha and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol. Lett. 112–113, 177–183 (2000)

    Article  Google Scholar 

  47. Hong, Y.H., et al.: Hydrogen peroxide-mediated transcriptional induction of macrophage colony-stimulating factor by TGF-beta 1. J. Immunol. 159(5), 2418–2423 (1997)

    CAS  Google Scholar 

  48. Verhasselt, V., Goldman, M., Willems, F.: Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur. J. Immunol. 28(11), 3886–3890 (1998)

    Article  CAS  Google Scholar 

  49. Lee, J.S., et al.: Modulation of monocyte chemokine production and nuclear factor kappa B activity by oxidants. J. Interferon Cytokine Res. 19(7), 761–767 (1999)

    Article  CAS  Google Scholar 

  50. Haddad, J.J.: Redox regulation of pro-inflammatory cytokines and I kappa B-alpha/NF-kappa B nuclear translocation and activation (vol 296, pg 847, 2002). Biochem. Biophys. Res. Commun. 301(2), 625–625 (2003)

    Article  CAS  Google Scholar 

  51. Bejarano, I., et al.: Hydrogen peroxide increases the phagocytic function of human neutrophils by calcium mobilisation. Mol. Cell. Biochem. 296(1–2), 77–84 (2007)

    Article  CAS  Google Scholar 

  52. Winn, J.S., et al.: Hydrogen-peroxide modulation of the respiratory burst of human neutrophils. Biochem. Pharmacol. 41(1), 31–36 (1991)

    Article  CAS  Google Scholar 

  53. Krjukov, A.A., et al.: Activation of redox-systems of monocytes by hydrogen peroxide. Biofactors 26(4), 283–292 (2006)

    Article  CAS  Google Scholar 

  54. Murphy, J.K., et al.: Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radic. Biol. Med. 18(1), 37–45 (1995)

    Article  CAS  Google Scholar 

  55. Seres, T., et al.: The phagocytosis-associated respiratory burst in human monocytes is associated with increased uptake of glutathione. J. Immunol. 165(6), 3333–3340 (2000)

    CAS  Google Scholar 

  56. Klune, J.R., et al.: HMGB1: Endogenous danger signaling. Mol. Med. 14(7–8), 476–484 (2008)

    CAS  Google Scholar 

  57. Bianchi, M.E., Manfredi, A.A.: High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 220, 35–46 (2007)

    Article  CAS  Google Scholar 

  58. Tang, D., et al.: Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 81(3), 741–747 (2007)

    Article  CAS  Google Scholar 

  59. Tsung, A., et al.: HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204(12), 2913–2923 (2007)

    Article  CAS  Google Scholar 

  60. Springer, T.A.: Traffic signals for lymphocyte recirculation and leukocyte emigration – the multistep paradigm. Cell 76(2), 301–314 (1994)

    Article  CAS  Google Scholar 

  61. Reyes-Reyes, M., et al.: Beta 1 and beta 2 integrins activate different signalling pathways in monocytes. Biochem. J. 363, 273–280 (2002)

    Article  CAS  Google Scholar 

  62. Lu, H.F., et al.: Hydrogen peroxide induces LFA-1-dependent neutrophil adherence to cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 278(3), H835–H842 (2000)

    CAS  Google Scholar 

  63. Blouin, E., Halbwachs-Mecarelli, L., Rieu, P.: Redox regulation of beta 2-integrin CD11b/CD18 activation. Eur. J. Immunol. 29(11), 3419–3431 (1999)

    Article  CAS  Google Scholar 

  64. Lu, H.F., Ballantyne, C., Smith, C.W.: LFA-1 (CD11a/CD18) triggers hydrogen peroxide production by canine neutrophils. J. Leukoc. Biol. 68(1), 73–80 (2000)

    CAS  Google Scholar 

  65. Nathan, C., et al.: Cytokine-induced respiratory burst of human-neutrophils – dependence on extracellular-matrix proteins and Cd11/Cd18 integrins. J. Cell Biol. 109(3), 1341–1349 (1989)

    Article  CAS  Google Scholar 

  66. Shappell, S.B., et al.: Mac-1 (Cd11b Cd18) mediates adherence-dependent hydrogen-peroxide production by human and canine neutrophils. J. Immunol. 144(7), 2702–2711 (1990)

    CAS  Google Scholar 

  67. Hashizume, K., et al.: N-acetyl-L-cysteine suppresses constitutive expression of CD11a/LFA-1 alpha protein in myeloid lineage. Leuk. Res. 26(10), 939–944 (2002)

    Article  CAS  Google Scholar 

  68. Fraticelli, A., et al.: Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochimica Et Biophysica Acta-Molecular Cell Research 1310(3), 251–259 (1996)

    Article  Google Scholar 

  69. Cai, H.: Hydrogen peroxide regulation of endothelial function: Origins, mechanisms, and consequences. Cardiovasc. Res. 68(1), 26–36 (2005)

    Article  CAS  Google Scholar 

  70. Carnemolla, R., Shuvaev, V.V., Muzykantov, V.R.: Targeting antioxidant and antithrombotic biotherapeutics to endothelium. Semin. Thromb. Hemost. 36(3), 332–342 (2010)

    Article  CAS  Google Scholar 

  71. Bradley, J.R., Johnson, D.R., Pober, J.S.: Endothelial activation by hydrogen-peroxide – selective increases of intercellular-adhesion molecule-1 and major histocompatibility complex class-I. Am. J. Pathol. 142(5), 1598–1609 (1993)

    CAS  Google Scholar 

  72. Hubbard, A.K., Rothlein, R.: Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 28(9), 1379–1386 (2000)

    Article  CAS  Google Scholar 

  73. Roebuck, K.A., et al.: H2o2 and tumor-necrosis-factor-alpha activate intercellular-adhesion molecule-1 (Icam-1) gene-transcription through distinct cis-regulatory elements within the Icam-1 Promoter. J. Biol. Chem. 270(32), 18966–18974 (1995)

    Article  CAS  Google Scholar 

  74. Kawai, M., et al.: Pyrrolidine dithiocarbamate inhibits intercellular-adhesion molecule-1 biosynthesis induced by cytokines in human fibroblasts. J. Immunol. 154(5), 2333–2341 (1995)

    CAS  Google Scholar 

  75. Saccani, A., et al.: Redox regulation of chemokine receptor expression. Proc. Natl. Acad. Sci. USA 97(6), 2761–2766 (2000)

    Article  CAS  Google Scholar 

  76. Lehoux, G., et al.: Upregulation of expression of the chemokine receptor CCR5 by hydrogen peroxide in human monocytes. Mediators Inflamm. 12(1), 29–35 (2003)

    Article  CAS  Google Scholar 

  77. Sung, F.L., Siow, X.L., Wang, G., Lynn, E.G., and Karmin, O.: Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: possible involvement of oxygen free radicals. Biochem. J. 357(Pt 1), 233–240 (2001)

    Google Scholar 

  78. Raja, et al.: Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front. Biosci. 12, 2249–2268 (2007)

    Google Scholar 

  79. Haase, I., et al.: Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. J. Cell Sci. 116(15), 3227–3238 (2003)

    Article  CAS  Google Scholar 

  80. Vardatsikos, G., Sahu, A., Srivastava, A.K.: The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid. Redox Signal. 11(5), 1165–1190 (2009)

    Article  CAS  Google Scholar 

  81. Higashi, Y., et al.: A redox-sensitive pathway mediates oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. J. Lipid Res. 46(6), 1266–1277 (2005)

    Article  CAS  Google Scholar 

  82. Hober, S., et al.: Insulin-like growth factors I and II are unable to form and maintain their native disulfides under in vivo redox conditions. FEBS Lett. 443(3), 271–276 (1999)

    Article  CAS  Google Scholar 

  83. Nishio, E., Watanabe, Y.: The involvement of reactive oxygen species and arachidonic acid in alpha 1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br. J. Pharmacol. 121(4), 665–670 (1997)

    Article  CAS  Google Scholar 

  84. Ranjan, P., et al.: Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid. Redox Signal. 8(9–10), 1447–1459 (2006)

    Article  CAS  Google Scholar 

  85. Rajagopalan, S., et al.: Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98(11), 2572–2579 (1996)

    Article  CAS  Google Scholar 

  86. Grange, L., et al.: NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid. Redox Signal. 8(9–10), 1485–1496 (2006)

    Article  CAS  Google Scholar 

  87. Yoon, S.O., et al.: Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. J. Biol. Chem. 277(33), 30271–30282 (2002)

    Article  CAS  Google Scholar 

  88. Clark, R.A.F.: The Molecular and Cellular Biology of Wound Repair, 2nd edn. Plenum, New York (1996)

    Google Scholar 

  89. Roy, S., et al.: Dermal wound healing is subject to redox control. Mol. Ther. 13(1), 211–220 (2006)

    Article  CAS  Google Scholar 

  90. Arbiser, J.L., et al.: Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl Acad. Sci. USA 99(2), 715–720 (2002)

    Article  CAS  Google Scholar 

  91. West, X.Z., et al.: Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318), 972–976 (2010)

    Article  CAS  Google Scholar 

  92. Liu, X.P., Zweier, J.L.: A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: Evaluation in human polymorphonuclear leukocytes. Free Radic. Biol. Med. 31(7), 894–901 (2001)

    Article  CAS  Google Scholar 

  93. Ojha, N., et al.: Assessment of wound-site redox environment and the significance of Rac2 in cutaneous healing. Free Radic. Biol. Med. 44(4), 682–691 (2008)

    Article  CAS  Google Scholar 

  94. Stadtman, E.R.: Protein oxidation and aging. Free Radic. Res. 40(12), 1250–1258 (2006)

    Article  CAS  Google Scholar 

  95. Haycock, J.W., et al.: Oxidative damage to protein and alterations to antioxidant levels in human cutaneous thermal injury. Burns 23(7–8), 533–540 (1997)

    Article  CAS  Google Scholar 

  96. Aksenova, M., et al.: Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J. Neurotrauma 19(4), 491–502 (2002)

    Article  Google Scholar 

  97. Xiong, Y.Q., Rabchevsky, A.G., Hall, E.D.: Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J. Neurochem. 100(3), 639–649 (2007)

    Article  CAS  Google Scholar 

  98. Kamencic, H., et al.: Promoting glutathione synthesis after spinal cord trauma decreases secondary damage and promotes retention of function. FASEB J. 15(1), 243–250 (2001)

    Article  CAS  Google Scholar 

  99. Kumin, A., et al.: Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J. Cell Biol. 179(4), 747–760 (2007)

    Article  CAS  Google Scholar 

  100. Moseley, R., et al.: Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen. 12(4), 419–429 (2004)

    Article  Google Scholar 

  101. Pagnin, E., et al.: Diabetes induces p66(shc) gene expression in human peripheral blood mononuclear cells: Relationship to oxidative stress. J. Clin. Endocrinol. Metab. 90(2), 1130–1136 (2005)

    Article  CAS  Google Scholar 

  102. Fadini, G.P., et al.: The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59(9), 2306–2314 (2010)

    Article  CAS  Google Scholar 

  103. Uchida, K., Stadtman, E.R.: Modification of histidine-residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA 89(10), 4544–4548 (1992)

    Article  CAS  Google Scholar 

  104. Cao, Y., et al.: Neuroprotective effect of baicalin on compression spinal cord injury in rats. Brain Res. 1357, 115–123 (2010)

    Article  CAS  Google Scholar 

  105. Gupta, A., Singh, R.L., Raghubir, R.: Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol. Cell. Biochem. 241(1–2), 1–7 (2002)

    Article  CAS  Google Scholar 

  106. Grootveld, M., Halliwell, B.: Measurement of allantoin and uric-acid in human-body fluids – a potential index of free-radical reactions invivo. Biochem. J. 243(3), 803–808 (1987)

    CAS  Google Scholar 

  107. James, T.J., et al.: Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen. 11(3), 172–176 (2003)

    Article  Google Scholar 

  108. Morrow, J.D., et al.: Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed insitu on phospholipids. Proc. Natl Acad. Sci. USA 89(22), 10721–10725 (1992)

    Article  CAS  Google Scholar 

  109. Meagher, E.A., Fitzgerald, G.A.: Indices of lipid peroxidation in vivo: Strengths and limitations. Free Radic. Biol. Med. 28(12), 1745–1750 (2000)

    Article  CAS  Google Scholar 

  110. Yeoh-Ellerton, S., Stacey, M.C.: Iron and 8-isoprostane levels in acute and chronic wounds. J. Invest. Dermatol. 121(4), 918–925 (2003)

    Article  Google Scholar 

  111. Awad, J.A., Morrow, J.D.: Excretion of F-2-isoprostanes in bile – a novel index of hepatic lipid-peroxidation. Hepatology 22(3), 962–968 (1995)

    CAS  Google Scholar 

  112. Shukla, A., Rasik, A.M., Patnaik, G.K.: Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 26(2), 93–101 (1997)

    Article  CAS  Google Scholar 

  113. Rasik, A.M., Shukla, A.: Antioxidant status in delayed healing type of wounds. Int. J. Exp. Pathol. 81(4), 257–263 (2000)

    Article  CAS  Google Scholar 

  114. Mudge, B.P., et al.: Role of glutathione redox dysfunction in diabetic wounds. Wound Repair Regen. 10(1), 52–58 (2002)

    Article  Google Scholar 

  115. Adamson, B., et al.: Delayed repair: The role of glutathione in a rat incisional wound model. J. Surg. Res. 62(2), 159–164 (1996)

    Article  CAS  Google Scholar 

  116. Rees, R.S., et al.: Oxidant stress – the role of the glutathione redox cycle in skin preconditioning. J. Surg. Res. 58(4), 395–400 (1995)

    Article  CAS  Google Scholar 

  117. Levy, E.J., Anderson, M.E., Meister, A.: Transport of glutathione diethyl ester into human-cells. Proc. Natl Acad. Sci. USA 90(19), 9171–9175 (1993)

    Article  CAS  Google Scholar 

  118. Musalmah, M., et al.: Comparative effects of palm vitamin E and alpha-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats. Lipids 40(6), 575–580 (2005)

    Article  CAS  Google Scholar 

  119. Traber, M.G., Podda, M., Weber, C., Yan, L.J., Packer, L.: Diet derived and topically applied tocotrienols accumulate in skin and protect the tissue against UV-induced oxidative stress. Asia Pac. J. Clin. Nutr. 6, 63–67 (1997)

    Google Scholar 

  120. Serbinova, E., et al.: Free-radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic. Biol. Med. 10(5), 263–275 (1991)

    Article  CAS  Google Scholar 

  121. Suzuki, Y., et al.: Structural and dynamic membrane-properties of alpha-tocopherol and alpha-tocotrienol - implication to the molecular mechanism of their antioxidant potency. Biochemistry 32(40), 10692–10699 (1993)

    Article  CAS  Google Scholar 

  122. Altavilla, D., et al.: Lipid peroxidation inhibition by raxofelast improves angiogenesis and wound healing in experimental burn wounds. Shock 24(1), 85–91 (2005)

    Article  CAS  Google Scholar 

  123. Altavilla, D., et al.: Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 50(3), 667–674 (2001)

    Article  CAS  Google Scholar 

  124. Ruby, A.J., et al.: Antitumor and antioxidant activity of natural curcuminoids. Cancer Lett. 94(1), 79–83 (1995)

    Article  CAS  Google Scholar 

  125. Kunnumakkara, A.B., Anand, P., Aggarwal, B.B.: Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 269(2), 199–225 (2008)

    Article  CAS  Google Scholar 

  126. Maheshwari, R.K., et al.: Multiple biological activities of curcumin: a short review. Life Sci. 78(18), 2081–2087 (2006)

    Article  CAS  Google Scholar 

  127. Thangapazham, R.L., Sharma, A., Maheshwari, R.K.: Beneficial role of curcumin in skin diseases. Adv. Exp. Med. Biol. 595, 343–357 (2007)

    Article  Google Scholar 

  128. Panchatcharam, M., et al.: Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol. Cell. Biochem. 290(1–2), 87–96 (2006)

    Article  CAS  Google Scholar 

  129. Sidhu, G.S., et al.: Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 6(2), 167–177 (1998)

    Article  CAS  Google Scholar 

  130. Sidhu, G.S., et al.: Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen. 7(5), 362–374 (1999)

    Article  CAS  Google Scholar 

  131. Faler, B.J., et al.: Transforming growth factor-beta and wound healing. Perspect. Vasc. Surg. Endovasc. Ther. 18(1), 55–62 (2006)

    Article  Google Scholar 

  132. Gailit, J., Welch, M.P., Clark, R.A.: TGF-beta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J. Invest. Dermatol. 103(2), 221–227 (1994)

    Article  CAS  Google Scholar 

  133. Madhyastha, R., et al.: Curcumin facilitates fibrinolysis and cellular migration during wound healing by modulating urokinase plasminogen activator expression. Pathophysiol. Haemost. Thromb. 37(2–4), 59–66 (2010)

    CAS  Google Scholar 

  134. Choong, P.F., Nadesapillai, A.P.: Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin. Orthop. Relat. Res. 415 (Suppl), S46–S58 (2003)

    Article  Google Scholar 

  135. Biswas, S.K., et al.: Curcumin induces glutathione biosynthesis and inhibits NF-kappa B activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid. Redox Signal. 7(1–2), 32–41 (2005)

    Article  CAS  Google Scholar 

  136. Ringsdorf Jr., W.M., Cheraskin, E.: Vitamin C and human wound healing. Oral. Surg. Oral. Med. Oral. Pathol. 53(3), 231–236 (1982)

    Article  Google Scholar 

  137. Lima, C.C., et al.: Ascorbic acid for the healing of skin wounds in rats. Braz. J. Biol. 69(4), 1195–1201 (2009)

    Article  CAS  Google Scholar 

  138. Jagetia, G.C., et al.: Augmentation of wound healing by ascorbic acid treatment in mice exposed to gamma-radiation. Int. J. Radiat. Biol. 80(5), 347–354 (2004)

    Article  CAS  Google Scholar 

  139. Chan, D., et al.: Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. Biochem. J. 269(1), 175–181 (1990)

    CAS  Google Scholar 

  140. Peterkofsky, B.: Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am. J. Clin. Nutr. 54(6 Suppl), 1135S–1140S (1991)

    CAS  Google Scholar 

  141. Duarte, T.L., Cooke, M.S., Jones, G.D.: Gene expression profiling reveals new protective roles for vitamin C in human skin cells. Free Radic. Biol. Med. 46(1), 78–87 (2009)

    Article  CAS  Google Scholar 

  142. Gomathi, K., et al.: Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials 24(16), 2767–2772 (2003)

    Article  CAS  Google Scholar 

  143. Senel, O., et al.: Oxygen free radicals impair wound healing in ischemic rat skin. Ann. Plast. Surg. 39(5), 516–523 (1997)

    Article  CAS  Google Scholar 

  144. Abdelmalek, M., Spencer, J.: Retinoids and wound healing. Dermatol. Surg. 32(10), 1219–1230 (2006)

    Article  CAS  Google Scholar 

  145. Chigurupati, S., et al.: A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS One 5(4), e10044 (2010)

    Article  CAS  Google Scholar 

  146. Iuchi, Y., et al.: Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 341(1–2), 181–194 (2010)

    Article  CAS  Google Scholar 

  147. Steiling, H., et al.: Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 247(2), 484–494 (1999)

    Article  CAS  Google Scholar 

  148. Bayir, H., et al.: Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J. Neurochem. 101(1), 168–181 (2007)

    Article  CAS  Google Scholar 

  149. Pigeolet, E., et al.: Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Ageing Dev. 51(3), 283–297 (1990)

    Article  CAS  Google Scholar 

  150. Luo, J.D., et al.: Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 110(16), 2484–2493 (2004)

    Article  CAS  Google Scholar 

  151. Marrotte, E.J., et al.: Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J. Clin. Invest. 120(12), 4207–4219 (2010)

    Article  CAS  Google Scholar 

  152. Ceradini, D.J., et al.: Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J. Biol. Chem. 283(16), 10930–10938 (2008)

    Article  CAS  Google Scholar 

  153. Sen, C.K., et al.: Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J. Biol. Chem. 277(36), 33284–33290 (2002)

    Article  CAS  Google Scholar 

  154. Grzenkowicz-Wydra, J., et al.: Gene transfer of CuZn superoxide dismutase enhances the synthesis of vascular endothelial growth factor. Mol. Cell. Biochem. 264(1–2), 169–181 (2004)

    Article  CAS  Google Scholar 

  155. Ushio-Fukai, M., Alexander, R.W.: Reactive oxygen species as mediators of angiogenesis signaling - Role of NAD(P)H oxidase. Mol. Cell. Biochem. 264(1–2), 85–97 (2004)

    Article  CAS  Google Scholar 

  156. Alacam, A., et al.: Effects of topical Catalase application on dental pulp tissue: a histopathological evaluation. J. Dent. 28(5), 333–339 (2000)

    Article  CAS  Google Scholar 

  157. Auf dem Keller, U., et al.: Reactive oxygen species and their detoxification in healing skin wounds. J. Investig. Dermatol. Symp. Proc. 11(1), 106–111 (2006)

    Article  CAS  Google Scholar 

  158. Munz, B., et al.: A novel type of glutathione peroxidase: expression and regulation during wound repair. Biochem. J. 326(Pt 2), 579–585 (1997)

    CAS  Google Scholar 

  159. Kumin, A., et al.: Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am. J. Pathol. 169(4), 1194–1205 (2006)

    Article  CAS  Google Scholar 

  160. Wang, X., et al.: Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem. 278(27), 25179–25190 (2003)

    Article  CAS  Google Scholar 

  161. Schafer, M., Werner, S.: Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 58(2), 165–171 (2008)

    Article  CAS  Google Scholar 

  162. Wicke, C., et al.: Effects of steroids and retinoids on wound healing. Arch. Surg. 135(11), 1265–1270 (2000)

    Article  CAS  Google Scholar 

  163. Gopinath, D., et al.: Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25(10), 1911–1917 (2004)

    Article  CAS  Google Scholar 

  164. Merrell, J.G., et al.: Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol. 36(12), 1149–1156 (2009)

    Article  CAS  Google Scholar 

  165. Suwantong, O., et al.: Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48(26), 7546–7557 (2007)

    Article  CAS  Google Scholar 

  166. Chiumiento, A., et al.: Immobilizing Cu, Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. Biochem.-Moscow 71(12), 1324–1328 (2006)

    Article  CAS  Google Scholar 

  167. Kao, W.Y.J., Kleinbeck, K.R., Faucher, L.D.: Biomaterials modulate interleukin-8 and other inflammatory proteins during reepithelialization in cutaneous partial-thickness wounds in pigs. Wound Repair Regen. 18(5), 486–498 (2010)

    Article  Google Scholar 

  168. Jiang, W.W., et al.: Phagocyte responses to degradable polymers. J. Biomed. Mater. Res. A 82A(2), 492–497 (2007)

    Article  CAS  Google Scholar 

  169. Geurtsen, W., et al.: Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3 T3 and three human primary fibroblast cultures. J. Biomed. Mater. Res. 41(3), 474–480 (1998)

    Article  CAS  Google Scholar 

  170. Lefeuvre, M., et al.: TEGDMA induces mitochondrial damage and oxidative stress in human gingival fibroblasts. Biomaterials 26(25), 5130–5137 (2005)

    Article  CAS  Google Scholar 

  171. Serrano, M.C., et al.: Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films. Biomaterials 26(29), 5827–5834 (2005)

    Article  CAS  Google Scholar 

  172. Fleming, C., et al.: A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility. Nat. Chem. Biol. 1(5), 270–274 (2005)

    Article  CAS  Google Scholar 

  173. Spizzirri, U.G., et al.: Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10(7), 1923–1930 (2009)

    Article  CAS  Google Scholar 

  174. Wang, Y.Z., et al.: Expansion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells on a vitamin C functionalized polymer. Biomaterials 27(17), 3265–3273 (2006)

    Article  CAS  Google Scholar 

  175. Williams, S.R., et al.: Synthesis and characterization of poly(ethylene glycol)-glutathione conjugate self-assembled nanoparticles for antioxidant delivery. Biomacromolecules 10(1), 155–161 (2009)

    Article  CAS  Google Scholar 

  176. Udipi, K., et al.: Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J. Biomed. Mater. Res. 51(4), 549–560 (2000)

    Article  CAS  Google Scholar 

  177. Tsukimura, N., et al.: N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Biomaterials 30(20), 3378–3389 (2009)

    Article  CAS  Google Scholar 

  178. Wattamwar, P.P., et al.: Antioxidant activity of degradable polymer poly(trolox ester) to suppress oxidative stress injury in the cells. Adv. Funct. Mater. 20(1), 147–154 (2010)

    Article  CAS  Google Scholar 

  179. Vasilakes, A., Byarski, J.P., Biswal, D., Wattamwar, P.P., Peyyala, R., Hilt, J.Z., and Dzivbla, T.D.: Controlled release of catalase and vancomycin from poly(β-amino ester) Hydrogels J. Control. Release. (submitted)

    Google Scholar 

  180. Macri, L., Clark, R.A.F.: Tissue Engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Skin Pharmacol. Physiol. 22(2), 83–93 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Dziubla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wattamwar, P.P., Dziubla, T.D. (2012). Modulation of the Wound Healing Response Through Oxidation Active Materials. In: Bhatia, S. (eds) Engineering Biomaterials for Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1080-5_7

Download citation

Publish with us

Policies and ethics