Skip to main content

Combining Trust Region and Line Search Techniques

  • Chapter
Advances in Nonlinear Programming

Part of the book series: Applied Optimization ((APOP,volume 14))

Abstract

We propose an algorithm for nonlinear optimization that employs both trust region techniques and line searches. Unlike traditional trust region methods, our algorithm does not resolve the subproblem if the trial step results in an increase in the objective function, but instead performs a backtracking line search from the failed point. Backtracking can be done along a straight line or along a curved path. We show that the new algorithm preserves the strong convergence properties of trust region methods. Numerical results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Byrd, J. Nocedal and Y. Yuan (1987). “Global convergence of a class of quasi-Newton methods on convex problems”, SIAM J. Numer. Analysis, 24, pp. 1171–1190.

    Article  MathSciNet  MATH  Google Scholar 

  2. R.G. Carter (1991). “On the global convergence of trust region algorithms using inexact gradient information”, SIAM J. Numerical Analysis, 28,1 pp. 251–265.

    Article  MATH  Google Scholar 

  3. J.E. Dennis, Jr. and H.H.W. Mei (1979). “Two new unconstrained optimization algorithms which use function and gradient values”,J. Optim. Theory Appl 28, pp. 453–482.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.E. Dennis, Jr. and R.B. Schnabel (1983),Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Inc., ( Englewood Cliffs, NJ).

    MATH  Google Scholar 

  5. S.C. Eisenstat and H.F. Walker (1991). “Globally convergent inexact Newton methods”, Utah State University Mathematics and Statistics Department Research Report, February/91/51, University of Utah, Logan UT.

    Google Scholar 

  6. R. Fletcher (1987).Practical Methods of Optimization ( John Wiley and Sons, New York).

    MATH  Google Scholar 

  7. D.M. Gay (1981). “Computing optimal locally constrained steps”,SIAM J. on Scientific and Statistical Computing 2, pp. 186–197.

    Article  MathSciNet  MATH  Google Scholar 

  8. D.C. Liu and J. Nocedal (1989). “On the limited memory BFGS method for large scale optimization”,Mathematical Programming 45, pp. 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.J. Moré (1983). “Recent developments in software for trust region methods”, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming, The State of the Art ( Springer-Verlag, Berlin ), pp. 258–287.

    Google Scholar 

  10. J.J. Moré, B.S. Garbow and K.E. Hillstrom (1981). “Testing unconstrained optimization software”ACM Transactions on Mathematical Software 7, pp. 17–41.

    Article  MATH  Google Scholar 

  11. J.J. Moré and D.C. Sorensen (1983). “Computing a trust region step”,SIAM J. on Scientific and Statistical Computing 4, pp. 553–572.

    Article  MATH  Google Scholar 

  12. M.J.D. Powell (1970). “A new algorithm for unconstrained optimization”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear Programming ( Academic Press, New York ), pp. 31–66.

    Google Scholar 

  13. M.J.D. Powell (1975). “Convergence properties of a class of minimization algorithms”, in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear Programming (Academic Press, New York) 2, pp. 1–27.

    Google Scholar 

  14. M.J.D. Powell (1976). “Some global convergence properties of a variable metric algorithm for minimization without exact line searches”, in: R.W. Cottle and C.E. Lemke, eds.,Nonlinear Programming SIAM–AMS Proceedings (SIAM publications) 9, pp. 53–72.

    Google Scholar 

  15. M.J.D. Powell (1984). “On the global convergence of trust region algorithm for unconstrained optimization”,Mathematical Programming 29, pp. 297–303.

    Article  MathSciNet  MATH  Google Scholar 

  16. G.A. Schultz, R.B. Schnabel and R.H. Byrd (1985). “A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties”,SIAM Journal on Numerical Analysis 22 pp. 47–67.

    Article  MathSciNet  Google Scholar 

  17. D.C. Sorensen (1982a). “Trust region methods for unconstrained optimization”, in: M.J.D. Powell, ed.Nonlinear Optimization 1981 ( Academic Press, London ), pp. 29–38.

    Google Scholar 

  18. D.C. Sorensen (1982b). “Newton’s method with a model trust region modifications”,SIAM J. Numerical Analysis 19, pp. 409–426.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ph.L. Toint (1982). “Towards an efficient sparsity exploiting Newton method for minimization” in: I.S. Duff, ed.,Sparse Matrices and their Uses, ( Academic Press, New York ), pp. 57–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nocedal, J., Yuan, Yx. (1998). Combining Trust Region and Line Search Techniques. In: Yuan, Yx. (eds) Advances in Nonlinear Programming. Applied Optimization, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3335-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3335-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3337-1

  • Online ISBN: 978-1-4613-3335-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics