Skip to main content

Tertiary Structure Prediction

  • Chapter

Abstract

The polypeptide chain of globular protein is linear, but the three-dimensional of tertiary structure is quite contorted. This was apparent from the first crystallographic determination of the structure of a protein by Kendrew et al. (1960). The contortion arises because of the need to satisfy a multitude of conflicting interactions: the hydrogen-bonding requirements of buried nitrogen and oxygen atoms, placement of the remaining polar groups near the protein-solvent interface, and internalization of most hydrophobic residues. Anfinsen et al. (1961) demonstarted that the amino acid sequence contained enough information to define a protein tertiary structure. These experiments defined the protein-folding problem: by computation determine the precise tertiary structure of a protein from its amino acid sequence. In the 25 years that have followed, much regularity and order have been recognized in protein tertiary structure (for reviews, see Richards, 1977; Nemethy and Scherega, 1977; Schulz and Schirmer, 1979; Richardson, 1981; Sternberg, 1983; Chothia, 1984). This chapter describes some of the theoritical methods designed to predict protein structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel, R. A., 1984, Protein Structural Knowledge Engineering, Ph.D. Thesis, University of California, San Francisco.

    Google Scholar 

  • Amgen Technical Bulletin (1985).

    Google Scholar 

  • Anfinsen, C. B., Haber, E., Sela, M., and White, F. H., 1961, The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 47:1309–1314.

    PubMed  CAS  Google Scholar 

  • Arnone, A., Bier, C. J., Cotton, F. A., Day, V. W., Hazen, E. E., Jr., Richardson, D. C., Richardson, J. S., and Yonath, A., 1971, A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. I. Experimental procedures and chain tracing, J. Biol. Chem. 246:2302–2316.

    PubMed  CAS  Google Scholar 

  • Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merrett, M., and Phillips, A. W., 1979, Sequence, structure and activity of phosphoglycerate kinase: A possible hinge-bending enzyme, Nature 279:773–777.

    PubMed  CAS  Google Scholar 

  • Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson, C. I., and Wilson, I. A., 1975, Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data, Nature 255:609–614.

    PubMed  CAS  Google Scholar 

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. D., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanochi, T., and Tasumi, M., 1977, The Protein Data Bank: A computer-basee archival file for macromolecular structures, J. Mol. Biol. 112:535–542.

    PubMed  CAS  Google Scholar 

  • Blake, C. C. F., Geisow, M. J., Oatley, S. J., Rerat, B., and Rerat, C., 1978, Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å, J. Mol. Biol. 121:339–356.

    PubMed  CAS  Google Scholar 

  • Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R., and Klug, A., 1978, Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits, Nature 276:362–368.

    PubMed  CAS  Google Scholar 

  • Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnell, B., and Wistow, G., 1981, The molecular structure and stability of the eye lens: X-ray analysis of gamma-crystallin II, Nature 289: 771–777.

    PubMed  CAS  Google Scholar 

  • Chang, C. T., Wu, C. S. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation: Inclusion of the ß-turns, Anal. Biochem. 91:13–31.

    PubMed  CAS  Google Scholar 

  • Chizzonite, R., Truitt, T., Danho, W., Kilian, P., Gately, M., Tsien, W. H., Moschera, J., Collins, L., and Ju, G., 1986, Analysis of the functional domains of human and mouse interleukin-2 with monoclonal antibodies, J. Cell. Biochem. Suppl. 10A:73.

    Google Scholar 

  • Chothia, C., 1973, Conformation of twisted beta-pleated sheets in proteins, J. Mol. Biol. 75:295–302.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1984, Principles that determine the structure of proteins, Annu. Rev. Biochem. 53:537–572.

    PubMed  CAS  Google Scholar 

  • Chothia, C., and Janin, J., 1982, Orthogonal packing of beta-placed sheets in proteins, Biochemistry 21:3955–3965.

    PubMed  CAS  Google Scholar 

  • Chothia, C., Levitt, M., and Richardson, D., 1977, Structure of proteins: Packing of alpha-helices and pleated sheets, Proc. Natl. Acad. Sci. U.S.A. 74:4130–4134.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13:211–245.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1977, Beta-turns in proteins, J. Mol. Biol. 115:135–175.

    PubMed  CAS  Google Scholar 

  • Ciardelli, T. L., Smith, K. A., Gadski, R., Butler, L., Strnad, J., and Cohen, F. E., 1985, Structural studies of interleukin-2, in Peptides: Structure and Function (C. M. Deber, ed.), Pierce Chemical Co., Rockford, IL, p.75.

    Google Scholar 

  • Cohen, F. E., and Sternberg, M. J. E., 1980a, On the use of chemically derived distance constraints in the prediction of protein structure with myoglobin as an example, J. Mol. Biol. 137:9–22.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., and Sternberg, M. J. E., 1980b, On the prediction of protein structure: The significance of the root-mean-square deviation, J. Mol. Biol. 138:321–333.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Richmond, T. J., and Richards, F. M., 1979, Protein folding: Evaluation of some simple rules for the assembly of helices into tertiary structure with myoglobin as an example, J. Mol. Biol. 132:275–288.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R., 1980, Analysis and prediction of protein beta-sheet structures by a combinatorial approach, Nature 285:378–382.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Novotny, J. N., Sternberg, M. J. E., Campbell, D. G., and Williams, A. F., 1981a, Analysis of structural similarities between brain Thy-1 antigen and immunoglobulin domains: Evidence for an evolutionary relationship and an hypothesis for its functional significance, Biochem. J. 195:31–40.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R., 1981b, The analysis of the tertiary structure of protein beta-sheet sandwiches, J. Mol. Biol. 148:253–272.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R., 1982, The analysis and prediction of the tertiary structure of globular proteins involving the packing of α-helices against a ß-sheet: A combinatorial approach, J. Mol. Biol. 156:821–862.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Abarbanel, R. A., Kuntz, I. D., and Fletterick, R. J., 1983, A combinatorial approach to secondary structure prediction: α/ß proteins, Biochemistry 22:4894–4904.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Abarbanel, R. A., Kuntz, I. D., and Retterick, R. J., 1986a, Turn prediction in proteins using a pattern matching approach, Biochemistry 25:266–275.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Kosen, P. A., Kuntz, I. D., Epstein, L., Ciardelli, T., and Smith, K. A., 1986b, Structure activity studies of interleukin-2, Science 234:349–352.

    PubMed  CAS  Google Scholar 

  • Craik, C. S., Langman, C., Fletcher, T., Roczniak, S., Barr, P. J., Fletterick, R. J., and Rutter, W. J., 1985, Redesigning trypsin: Alteration of substrate specificity, Science 228:291–297.

    PubMed  CAS  Google Scholar 

  • Crick, F. H. C., 1953, The packing of α-helices: Simple coiled-coils, Acta. Crystallogr. 6:689–697.

    CAS  Google Scholar 

  • Efimov, A. V., 1979, Packing of alpha-helices in globular proteins. Layer-structure of globin hydrophobic cores, J. Mol. Biol. 134:23–40.

    PubMed  CAS  Google Scholar 

  • Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B.-O., Tapia, O., Branden, C.-I., and Akeson, A., 1976, Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution, J. Mol. Biol. 102:27–59.

    PubMed  CAS  Google Scholar 

  • Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M., Huber, R., and Palm, W., 1974, Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI, Eur. J. Biochem. 45:513–524.

    PubMed  CAS  Google Scholar 

  • Evans, P. R., and Hudson, P. J., 1979, Structure and control of phosphofructokinase from Bacillus stearothemophilus, Nature 279:500–504.

    PubMed  CAS  Google Scholar 

  • Garnier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120:97–120.

    PubMed  CAS  Google Scholar 

  • Goel, N. S., and Ycas, M., 1979, On the computation of the tertiary structure of globular proteins, J. Theor. Biol. 77:253–305.

    PubMed  CAS  Google Scholar 

  • Hagler, A. T., and Honig, B., 1978, On the formation of protein tertiary structure on a computer, Proc. Natl. Acad. Sci. U.S.A. 75:554–558.

    PubMed  CAS  Google Scholar 

  • Hartsuck, J. A., and Lipscomb, W. N., 1971, Carboxypeptidase A, in: The Enzymes (P. D. Boyer, ed.), Academic Press, New York, pp. 1–56.

    Google Scholar 

  • Havel, T. F., Crippen, G. M., and Kuntz, I. D., 1979, Effects of distance constraints on macromolecular conformation. II Simulation of experimental results and theoretical predictions, Biopolymers 18:73–81.

    CAS  Google Scholar 

  • Hendrickson, W. A., and Ward, K. B., 1977, Pseudosymmetry in the structure of myohemerythrin, J. Biol. Chem. 252:3012–3018.

    PubMed  CAS  Google Scholar 

  • Holbrook, J. J., Liljas, A., Steindel, J., and Rossman, M. G., 1975, Lactate dehydrogenase, in: The Enzymes (P. D. Boyer, ed.), Academic Press, New York, pp. 191–292.

    Google Scholar 

  • Holmes, M. A., and Matthews, B. W., 1982, Structure of thermolysin refined at 1.6 Å resolution, J. Mol. Biol. 160:623–639.

    PubMed  CAS  Google Scholar 

  • Holmgren, A., Soderberg, B.-O., Eklund, H., and Branden, C.-I., 1975, Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 72:2305–2309.

    PubMed  CAS  Google Scholar 

  • Janin, J., and Chothia, C., 1980, Packing of alpha-helices onto beta-pleated sheets and the anatomy of alpha/beta proteins, J. Mol. Biol. 143:95–128.

    PubMed  CAS  Google Scholar 

  • Jones, T. A., and Liljas, L., 1984, Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 Å resolution, J. Mol. BioI. 177:753.

    Google Scholar 

  • Kabsch, W., and Sander, C., 1984, On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformations, Proc. Natl. Acad. Sci. U.S.A. 81:1075–1078.

    PubMed  CAS  Google Scholar 

  • Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C., and Shore, V. C., 1960, Structure of myoglobin, a three-dimensional Fourier synthesis at 2 Å resolution, Nature 185: 422–427.

    PubMed  CAS  Google Scholar 

  • Kim, P. S., and Baldwin, R. L., 1984, A helix stop signal in the isolated S-peptide of ribonuclease A, Nature 307:329–334.

    PubMed  CAS  Google Scholar 

  • Kretsinger, R. H., and Nockolds, C. E., 1973, Carp muscle calcium-binding protein. II. Structure determination and general description, J. Biol. Chem. 248:3313–3326.

    PubMed  CAS  Google Scholar 

  • Kuntz, I. E., 1972, Protein folding, J. Am. Chem. Soc. 94:4009–4012.

    PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.

    PubMed  CAS  Google Scholar 

  • Lee, B. K., and Richards, F. M., 1971, The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol. 55:379–400.

    PubMed  CAS  Google Scholar 

  • Lerner, R. A., 1984, Antibodies of predetermined specificity in biology and medicine, Adv. Immunol. 36:1–44.

    PubMed  CAS  Google Scholar 

  • Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261:552–558.

    PubMed  CAS  Google Scholar 

  • Levitt, M., and Warshel, A., 1975, Computer simulation of protein folding, Nature 253:694–698.

    PubMed  CAS  Google Scholar 

  • Lewis, P. N., Momany, F. A., and Scheraga, H. A., 1971, Folding of polypeptide chains in proteins: A proposed mechanism for folding, Proc. Natl. Acad. Sci. U.S.A. 68:2293–2297.

    PubMed  CAS  Google Scholar 

  • Liang, S. M., Thatcher, D. R., Liang, C. M., and Allet, B., 1986, Studies of structure-activity relationships of human interleukin-2, J. Biol. Chem. 261:334–337.

    PubMed  CAS  Google Scholar 

  • Lifson, S., and Sander, C., 1980, Specific recognition in the tertiary structure of beta-sheets of proteins, J. Mol. Biol. 139:627–639.

    PubMed  CAS  Google Scholar 

  • Lifson, J. D., Benike, C. J., Mark, D. F., Koth, S. K., and Engleman, E: B., 1984, Human recombinant interleukin-2 partly reconstitutes deficient in-vitro immune responses of lymphocytes from patients with AIDS, Lancet 1:698.

    PubMed  CAS  Google Scholar 

  • Lim, V. I., 1974, Algorithms for prediction of alpha-helical and beta-structural regions in globular proteins, J. Mol. Biol. 88:857–894.

    PubMed  CAS  Google Scholar 

  • Mathews, F. S., Bethge, P. H., and Czerwinski, E. W., 1979, The structure of cytochrome b562 from Escherichia coli at 2.5 Å resolution, J. Biol. Chem. 254:1699–1706.

    PubMed  CAS  Google Scholar 

  • Matthews, B. W., and Remington, S. J., 1974, The three dimensional structure of the lysozyme from bacteriophage T4, Proc. Natl. Acad. Sci. U.S.A. 71:4178–4182.

    PubMed  CAS  Google Scholar 

  • McCammon, J. A., Gelin, B. R., and Karplus, M., 1977, Dynamics of folded proteins, Nature 267:585–590.

    PubMed  CAS  Google Scholar 

  • Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A., 1975, Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem. 79:2361–

    CAS  Google Scholar 

  • Momon, J. P., Fridlansky, F., Bally, R., and Milgrom, E., 1980, X-ray crystallographic analysis of a progesterone-binding protein. The C2221 crystal form of oxidized uteroglobin at 2.2 Å resolution, J. Mol. Biol. 137:415–429.

    Google Scholar 

  • Nemethy, G., and Scheraga, H. A., 1977, Protein folding, Q. Rev. Biophys. 10:239–352.

    PubMed  CAS  Google Scholar 

  • Nishikawa, K., Kubota, Y., and Ooi, T., 1983, Classification of proteins into groups based on amino acid composition and other characters. I. Angular distribution, J. Biochem. 94:981–995.

    PubMed  CAS  Google Scholar 

  • Ploegman, J. H., Drenth, G., Kalk, K. H., and Hol, W. G. J., 1978, Structure of bovine liver rhodanese. I. Structure determination at 2.5 Å resolution and a comparison of the conformation and sequence of its two domains, J. Mol. Biol. 123:557–594.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., 1979, Stability of proteins: Small globular proteins, Adv. Protein Chem. 33:167–241.

    PubMed  CAS  Google Scholar 

  • Provencher, S. W., and Glockner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20:33–37.

    PubMed  CAS  Google Scholar 

  • Ptitsyn, O. B., and Rashin, A. A., 1975, A model of myoglobin self-organization, Biophys. Chem. 3:1–20.

    PubMed  CAS  Google Scholar 

  • Ptitsyn, O. B., Finklestein, A. B., and Falk, P., 1979, Principal folding pathway and topology of all-beta proteins, FEBS Lett. 101:1–5.

    PubMed  CAS  Google Scholar 

  • Ralph, P., Nakoinz, I., Doyle, M., Lee, M. T., Koths, K., Halenback, R., and Mark, D. F., 1986, Human B and T lymphocytes stimulating properties of interleukin-2, J. Cell. Biochem. 10A:71.

    Google Scholar 

  • Reeke, G. N., Becker, J. W., and Edelman, G. M., 1975, The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure, J. Biol. Chem. 250: 1525–1547.

    PubMed  CAS  Google Scholar 

  • Richards, F. M., 1977, Areas, volumes, packing and protein structure, Annu. Rev. Biophys. Bioeng. 6:151–176.

    PubMed  CAS  Google Scholar 

  • Richards, F. M., and Richmond, T., 1978, tSolvents, interfaces, and protein structure, CIBA Symposium on Molecular Interactions and Activity in Proteins, Exerpta Medica., Amsterdam, Oxford: New York, pp. 23–45.

    Google Scholar 

  • Richardson, J. S., 1976, Handedness of crossover connections in beta sheets, Proc. Natl. Acad. Sci. U.S.A. 73: 2619–2623.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1977, ß-sheet topology and the relatedness of proteins, Nature 268:495–500.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:167–339.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., Getzoff, E. D., and Richardson, D. C., 1978, The beta bulge: A common small unit of nonrepetitive protein structure, Proc. Natl. Acad. Sci. U.S.A. 75:2574–2578.

    PubMed  CAS  Google Scholar 

  • Richmond, T. J., and Richards, F. M., 1978, Packing of alpha-helices: Geometrical constraints and contact areas, J. Mol. Biol. 119:537–555.

    PubMed  CAS  Google Scholar 

  • Rose, G. D., 1978, Prediction of chain turns in globular proteins on a hydrophobic basis, Nature 272:586–590.

    PubMed  CAS  Google Scholar 

  • Saul, F. A., Amzel, L. M., and Poljak, R. J., 1978, Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 Å resolution, J. Biol. Chem. 253:585–597.

    PubMed  CAS  Google Scholar 

  • Sawyer, L., Shotton, D. M., Campbell, J. W., Wendell, P. L., Muirhead, H., Watson, H. C., Diamond, R., and Ladner, R. C., 1978, The atomic structure of crystalline porcine pancreatic elastase at 2.5 Å resolution: Comparisons with the structure of alpha-chymotrypsin, J. Mol. Biol. 118:137–208.

    PubMed  CAS  Google Scholar 

  • Schulz, G. E., and Schirmer, R. H., 1979, Principles of Protein Structure, Springer-Verlag, New York.

    Google Scholar 

  • Schulz, G. E., Elzinga, M., Marx, F., and Schirmer, R. H., 1974, Three dimensional structure of adenyl kinase, Nature 250:120–123.

    PubMed  CAS  Google Scholar 

  • Sheridan, R. P., Dixon, J. S., Venkataraghavan, R., Kuntz, I. D., and Scott, K. P., 1985, Amino acid composition and hydrophobicity patterns of protein domains correlate with their structures, Biopolymers 24:1995–2023.

    PubMed  CAS  Google Scholar 

  • Smith, W. W., Burnett, R. M., Darling, G. D., and Ludwig, M. L., 1977, Structure of the semiquinone form of flavodoxin from Clostridium MP. Extension of 1.8 Å resolution and some comparisons with the oxidized state, J. Mol. Biol. 117:195.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., 1983, The analysis and prediction of protein structure, in: Computing in Biological Science (M. Geisow and A. Barrett, eds.), Elsevier, Amsterdam, pp. 143–177.

    Google Scholar 

  • Sternberg, M. J. E., and Thorton, J. M., 1976, On the conformation of proteins: The handedness of the betastrand-alpha-helix-beta-strand unit, J. Mol. Biol. 105:367–382.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., and Thorton, J. M., 1977a, On the conformation of proteins: An analysis of beta-pleated sheets, J. Mol. Biol. 110:285–296.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., and Thorton, J. M., 1977b, On the conformation of proteins: Towards the prediction of strand arrangements in beta-pleated sheets, J. Mol. Biol. 113:401–418.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., and Thorton, J. M., 1978, Prediction of protein structure from amino acid sequence, Nature (London) 271:15–20.

    CAS  Google Scholar 

  • Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C., 1982, Determination and analysis of the 2 Å-structure of copper, zinc superoxide dismutase, J. Mol. Biol. 160:181–217.

    PubMed  CAS  Google Scholar 

  • Takano, T., 1977, Structure of myoglobin refined at 2.0 Å resolution. II. Structure of deoxymyoglobin from sperm whale, J. Mol. Biol. 110:569–584.

    PubMed  CAS  Google Scholar 

  • Taylor, W. R., and Thorton, J. M., 1983, Prediction of super-secondary structure in proteins, Nature 301:540–542.

    PubMed  CAS  Google Scholar 

  • Thornton, J. M., 1982, Disulphide bridges in globular proteins, J. Mol. Biol. 151:261–287.

    Google Scholar 

  • Twining, S. S., David, C. S., and Atassi, M. Z., 1981, Genetic control of the immune response to myoglobin. IV. Mouse antibodies in outbred and congenic strains against sperm-whale myoglobin recognize the same antigenic sites that are recognized by antibodies raised in other species, Mol. Immunol. 18:447–450.

    PubMed  CAS  Google Scholar 

  • Wells, J. A., and Powers, D. B., 1986, In vivo formation and stability of engineered disulfide bonds in subtilisin, J. Bioi. Chem. 261:6564–6570.

    CAS  Google Scholar 

  • Wetlaufer, D. B., and Ristow, S. S., 1973, Acquisition of three-dimensional structure of proteins, Annu. Rev. Biochem. 42:135–158.

    PubMed  CAS  Google Scholar 

  • Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution, Nature 289:366–373.

    PubMed  CAS  Google Scholar 

  • Wright, C. S., Alden, R. A., and Kraut, J., 1969, Structure of subtilisin BPN at 2.5 Å resolution, Nature 221: 235–242.

    PubMed  CAS  Google Scholar 

  • Yamada, T., Kato, K., Kawahara, K., and Nishimura, O., 1986, Separation of recombinant human interleukin-2 and methionyl interleukin-2 produced in Escherichia coli, Biochem. Biophys. Res. Commun. 135:837–843.

    PubMed  CAS  Google Scholar 

  • Zav’yalov, V. P., and Denesyuk, A. I., 1982, Possible conformation of interferons: A prediction based on amino acid composition and sequence, Immunol. Lett. 4:7–14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Cohen, F.E., Kuntz, I.D. (1989). Tertiary Structure Prediction. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics