Skip to main content

Measurement, Causation and Local Independence in Latent Variable Models

  • Conference paper
Book cover Latent Variable Modeling and Applications to Causality

Part of the book series: Lecture Notes in Statistics ((LNS,volume 120))

Abstract

Latent variable models are used extensively in the social and behavioral sciences for a variety of purposes, including measurement, description, and explanation. The latent variables may be continuous or discrete and the indicators of these may be continuous and/or discrete as well. Crossing the levels of measurement of the indicators with the assumptions on the level of measurement and distribution of the latent variables yields a variety of distinct latent variable models. A theme that unifies these different models is the assumption (or axiom) of conditional independence, which states that the indicators are independent, given the latent variable(s). The use of this axiom has been justified on various grounds, ranging from convenience to considerations of causality. This paper examines several of these justifications. First, the use of this axiom in the context of measurement and prediction is examined. Examples where the use of the axiom is scientifically plausible and implausible are considered, and the implications of the use of this assumption in both situations is discussed. I also show that the usual practice of viewing factor loadings as scaling factors that translate between units of measurement is incorrect. Second, the principle of the common cause is sometimes given as a justification for the use of the conditional independence assumption. The argument here is that the latent variables are the causes of the observed variables (indicators), and these indicators are not causes of one another. Hence (according to the argument), the association between the indicators is supposed to vanish when conditioning on the values of the latent variables. I show that this principle is not sound, and therefore cannot be used to justify the axiom of conditional independence. I also show that a modified version of this principle can be used to justify the conditional independence assumption in some instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angrist, J.D., Imbens, G.W., & Rubin,D.B. (1993). Identification of causal effects using instrumental variables. unpublished manuscript, Harvard University.

    Google Scholar 

  • Anderson, T. W. (1984). Anintroduction to multivariate statistical analysis(2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Arminger, G., & Sobel, M. E. (1990). Pseudo maximum likelihood estimation of mean and covariance structures with missing data.Journal of theAmericanStatistical Association85, 195–203.

    Article  MathSciNet  Google Scholar 

  • Bartholomew, D. J. (1981). Posterior analysis of the factor model.British Journal of Mathematical and Statistical Psychology34, 93–99.

    MathSciNet  MATH  Google Scholar 

  • Bartholomew, D. J. (1987).Latent variable models and factor analysis.London: Griffin.

    MATH  Google Scholar 

  • Bielby, W. T. (1986). Arbitrary metrics in multiple-indicator models of latent variables.Sociological Methods and Research15, 3–23.

    Article  Google Scholar 

  • Bollen, K. A. (1989).Structural equation models with latent variables.New York: Wiley.

    Google Scholar 

  • Dawid, A. P. (1979). Conditional independence in statistical theory (with discussion).Journal of the Royal Statistical SocietySer. B, 41, 1–31.

    MathSciNet  MATH  Google Scholar 

  • Fuller, W. A. (1987).Measurement error models.New York: Wiley.

    Book  MATH  Google Scholar 

  • Geweke, J. (1984). Inference and causality in economic time series models. In Z. Griliches & M. D. Intrilligator (Eds.)Handbook of Econometrics(Vol. 2), (pp. 1101–1144). Amsterdam: North Holland.

    Google Scholar 

  • Guttman, L. (1957). Simple proofs of relations between the communality problem and multiple correlation.Psychometrika22, 147–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, N. W. (1986). On “Arbitrary metrics” and “Normalization issues”.Sociological Methods and Research15, 59–61.

    Article  Google Scholar 

  • Holland, P. W. (1986). Statistics and causal inference (with discussion).Journal of the American Statistical Association81, 945–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equation models (with discussion). In C. C. Clogg (Ed.)Sociological methodology1988.(pp. 449–493). Washington, D. C.: American Sociological Association.

    Google Scholar 

  • Holland, P. W., & Rosenbaum, P. (1986). Conditional association and unidimensionality in monotone latent variable models.The Annals of Statistics14, 1523–1543.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsiao, C. (1995). Panel analysis for metric data. In G. Arminger, C. C. Clogg&M. E. Sobel (Eds.) (1995).Handbook of statistical modeling for the social and behavioral sciences(pp. 361–400). New York: Plenum.

    Google Scholar 

  • Lazarsfeld, P. F. (1959). In S. Koch (Ed.)Psychology: a study of a science(Vol. 3), (pp. 476–543). New York: McGraw-Hill.

    Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968).Statistical theories of mental test scores.Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Mare, R. D., & Mason, W. M. (1980). Children’s reports of parental socioeconomic status.Sociological Methods and Research9, 178–198.

    Article  Google Scholar 

  • Pratt, J. W., & Schlaifer, R. (1988). On the interpretation and observation of laws.Journal of Econometrics39, 23–52.

    Article  MathSciNet  Google Scholar 

  • Reichenbach, H. (1956).The direction of time.Berkeley: University of California Press.

    Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and non-randomized studies.Journal of Educational Psychology66, 688–701.

    Article  Google Scholar 

  • Rubin, D. B. (1977). Assignment to treatment groups on the basis of a covariate.Journal of Educational Statistics2, 1–26.

    Article  Google Scholar 

  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization.The Annals of Statistics6, 34–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin, D. B. (1980). Comment on “Randomization analysis of experimental data: The Fisher randomization test” by D. Basu.Journal of the American Statistical Association75, 591–93.

    Article  Google Scholar 

  • Salmon, W. C. (1984).Scientific explanation and the causal structure of the world. Princeton, N. J: Princeton University Press.

    Google Scholar 

  • Simon, H. A. (1954). Spurious correlation: A causal interpretation.Journal of the Americcan Statistical Association49, 467–492.

    Article  MATH  Google Scholar 

  • Smith, J. Q. (1988). Models, optimal decisions and influence diagrams. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley&A. F. M. Smith (Eds.)Bayesian statistics 3(pp. 765–776). Oxford: Oxford University Press.

    Google Scholar 

  • Sobel, M. E. (1981).Lifestyle and social structure: Concepts definitions analyses.New York: Academic Press.

    Google Scholar 

  • Sobel, M. E. (1990). Effect analysis and causation in linear structural equation models.Psychometrika55, 495–515.

    Article  MathSciNet  Google Scholar 

  • Sobel, M. E. (1994a). Causal inference in artificial intelligence. In P. Cheeseman & R. W. Oldford (Eds.)Selecting models from data(pp.183–196). New York: Springer-Verlag.

    Google Scholar 

  • Sobel, M. E. (1994b). Causal inference in latent variable models. In A. von Eye & C. C. Clogg (Eds.)Latent Variables Analysis(pp.3–35). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Sobel, M. E. (1995). Causal inference in the social and behavioral sciences. In G. Arminger, C. C. Clogg&M. E. Sobel (Eds.), (1995).Handbook of statistical modeling for the social and behavioral sciences.(pp. 1–38). New York: Plenum.

    Google Scholar 

  • Sobel, M. E., & Arminger, G. (1986). Platonic and operational true scores in covariance structure analysis: An invited comment on Bielby’s “Arbitrary metrics in multiple indicator models of latent variables”.Sociological Methods and Research15, 44–58.

    Article  Google Scholar 

  • Suppes, P. (1970). Aprobabilistic theory of causality.Amsterdam: North-Holland.

    Google Scholar 

  • Suppes, P. (1984).Probabilistic metaphysics.Oxford: Basil Blackwell.

    Google Scholar 

  • Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible?Synthese48, 191–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Sutcliffe, J. P. (1965). A probability model for errors of classification. I: General considerations.Psychometrika30, 73–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Wheaton, B., Muthün, B., Alwin, D. F., & G. F. Summers (1977). Assessing reliability and stability in panel models. In D. R. Heise (Ed.)Sociological methodology1977.(pp. 84–135). San Francisco: Jossey-Bass.

    Google Scholar 

  • Whittaker, J. (1990).Graphical models in applied multivariate statistics.Chichester: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Sobel, M.E. (1997). Measurement, Causation and Local Independence in Latent Variable Models. In: Berkane, M. (eds) Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics, vol 120. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1842-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1842-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94917-8

  • Online ISBN: 978-1-4612-1842-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics