Skip to main content

Growmol, A De novo Computer Program, and its Application to Thermolysin and Pepsin: Results of the Design and Synthesis of a Novel Inhibitor

  • Chapter
Rational Drug Design

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 108))

Abstract

The conceptual basis for structure-based drug design was formulated 100 years ago by Emil Fisher(1). His “lock and key” hypothesis is a constantly recurring theme in modern drug design. Previously, knowledge of the “lock”, i.e. the biochemical target, could only be inferred by the structures of a variety of “keys” (ligands) all of which fit the “lock”. However, thanks to the advances in protein expression, X-ray crystallography and NMR, more and more often we now actually have the three dimensional structure of the biological target. And, thus, the new challenge is how to utilize this information to rapidly discover novel, potent molecules which will exquisitely fit the “lock”.

A number of computational methods are emerging which is use three dimensional structures to automatically design, de novo , molecules which fit into binding sites. We describe here the development and use of a computer program called GrowMol(2, 3), which generates organic structures that are both spatially and chemically complementary to the target binding site. By “growing ” molecules an atom at a time to fill the various nooks and crannies of a binding site, GrowMol can generate structures with exquisite complementary to the host. At each step, the position and type of atom to be added are randomly selected using Boltzmann statistics to bias acceptance toward atoms that can form favorable interactions with the binding site. GrowMol was first tested with thermolysin. The program generated known inhibitors as well as large numbers of novel, diverse structures complementary to the thermolysin binding site. Recently, GrowMol was applied to the aspartic acid protease, pepsin, resulting in the discovery of a novel, low molecular weight inhibitor. (4)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Fischer, Ber. Dtsch. Ges. 27, 2985 (1894).

    Article  Google Scholar 

  2. R. S. Bohacek, C. McMartin, J. Amer. Chem.Soc. 116, 5560–5571 (1994).

    Article  Google Scholar 

  3. R. Bohacek, C. McMartin Nature Medicine 1, 177–178 (1995).

    Article  Google Scholar 

  4. D. H. Rich, R. S. Bohacek, N. A. Dales, P. Glunz, A. S. Ripka, Chimia 51, 45–47 (1997).

    Google Scholar 

  5. Y. Nishibata, A. Itai Tetrahedron 47, 8985–8990 (1991).

    Article  Google Scholar 

  6. J. B. Moon, W. J. Howe,Proteins: Struct., Funct, Genet. 11, 314–328 (1991).

    Article  Google Scholar 

  7. H.-J. Boehm, Current Opin. in Biotechnology 7, 433–436 (1996).

    Article  Google Scholar 

  8. H.-J. Boehm, J. Comput. Aided Mol. Des. 6, 61–78 (1992).

    Article  Google Scholar 

  9. A. Miranker, M. Karplus Proteins 11, 29–34 (1991).

    Article  Google Scholar 

  10. A. Miranker, M. Karplus Proteins 23, 472–490 (1995).

    Article  Google Scholar 

  11. D. A. Pearlman, M. A. Murcko, J. Med. Chem. 10, 1184–1193 (1993).

    Google Scholar 

  12. D. A. Pearlman, M. A. Murcko, J. Med. Chem. 39, 1651–1663 (1996).

    Article  Google Scholar 

  13. A. Calfisch, A. Miranker, M. Karplus, J. Med. Chem. 38, 2142–2167 (1993).

    Google Scholar 

  14. A. Calfisch, J. Comput. Aided Mol. Des. 10, 372–396 (1996).

    Article  Google Scholar 

  15. D. K. Gehlhaar, et al., J. Med. Chem.,38, 466–472 (1995).

    Article  Google Scholar 

  16. S. H. Rotstein, M. A. Murcko, J. Med. Chem. 36 1700–1710 (1993).

    Article  Google Scholar 

  17. R. S. Bohacek, C. McMartin, J. Med. Chem. 35, 1671–1684 (1992).

    Article  Google Scholar 

  18. C. McMartin, R. Bohacek J. Comput-Aided Mol. Des. 9, 237–250 (1997).

    Article  Google Scholar 

  19. N. L. Allinger, J. Am. Chem. Soc. 99, 8127–8140 (1977).

    Article  Google Scholar 

  20. P. A. Bartlett, C. K. Marlowe Science 235, 569–571 (1987).

    Article  Google Scholar 

  21. F. C. Berstein, et al. J. Mol. Biol. 112, 535–542 (1977).

    Article  Google Scholar 

  22. S. L. Roderick, M. C. Fournie-Zaluski, B. P. Roques, B.W. Matthews, Biochemistry 28, 1493–1497 (1989).

    Article  Google Scholar 

  23. T. Benchetrit, M. C. Fournie-Zaluski, B. P. Roques, Biophys. Res. Commun. 147, 1034–1040 (1987).

    Article  Google Scholar 

  24. L. J. MacPherson, et al., J. Med. Chem. 36, 3821–3828 (1993).

    Article  Google Scholar 

  25. G. M. Ksander, et al., J. Med. Chem. 40, 495–505 (1997).

    Article  Google Scholar 

  26. L. Chen, et al.,Acta Crystallogr., Sect. B 48, 476 (1992).

    Article  Google Scholar 

  27. D. J. Rich, R. S. Bohacek, N. A. Dales, P. Glunz, A. S. Ripka, Combinatorial design and combinatorial synthesis of enzyme inhibitors, Actualites de Chimie Therapeutic-22e serie (Elseveir, Amsterdam, 1996).

    Google Scholar 

  28. D. S. Pickering, M. V. Kirshna, D. C. Miller, W. W. Chan, Arch. Biochem. Biophys. 239, 368–374 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bohacek, R., Mcmartin, C., Glunz, P., Rich, D.H. (1999). Growmol, A De novo Computer Program, and its Application to Thermolysin and Pepsin: Results of the Design and Synthesis of a Novel Inhibitor. In: Truhlar, D.G., Howe, W.J., Hopfinger, A.J., Blaney, J., Dammkoehler, R.A. (eds) Rational Drug Design. The IMA Volumes in Mathematics and its Applications, vol 108. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1480-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1480-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7159-8

  • Online ISBN: 978-1-4612-1480-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics