Skip to main content

The Sensory Ecology of Acoustic Communication in Insects

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 10))

Abstract

Why should we consider ecological aspects in the context of acoustic communication at all? Ecology may be defined as the study of the interaction of an organism with its environment, including other organisms. Behavioral ecologists, for example, focus their interest on the interactions between an animal and its conspecifics, its predators and prey, food resources, territories, etc. Like ethologists, they are primarily concerned with the adaptive value and/or the evolution of behavior rather than the mechanisms being used. By contrast, sensory ecologists are more concerned with the mechanisms that enable an animal to produce or utilize signals and how the information about identity or location of the sender is transmitted to the receiver(s).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arak A, Eiriksson T (1992) Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation. Behav Ecol Sociobiol 30:365–372.

    Article  Google Scholar 

  • Arak A, Eiriksson T, Radesäter T (1990) The adaptive significance of acoustic spacing in male bushcrickets Tettigonia viridissima: a perturbation experiment. Behav Ecol Sociobiol 26:1–7.

    Article  Google Scholar 

  • Bailey WJ (1985) Acoustic cues for female choice in bushcrickets (Tettigoniidae). In: Kalmring K, Elsner N (eds) Acoustic and Vibrational Communication in Insects. Paul Parey, pp. 107–111.

    Google Scholar 

  • Bailey WJ, Yeoh PB (1988) Female phonotaxis and frequency discrimination in the bushcricket Requena verticalis. Physiol Entomol 13:363–372.

    Article  Google Scholar 

  • Bailey WJ, Cunningham RC, Lebel L, Weatherilt C (1990) Song power, spectral distribution and female phonotaxis in the bushcricket Requena verticalis (Tettigoniidae, Orthoptera): active female choice or passive attraction. Anim Behav 40:33–42.

    Article  Google Scholar 

  • Belwood J, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Bennet-Clark HC (1987) The tuned singing burrow of mole crickets. J Exp Biol 128:383–409.

    Google Scholar 

  • Cade WH (1975) Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190:1312–1313.

    Google Scholar 

  • Cade WH (1981) Field cricket spacing, and the phonotaxis of crickets and parasitoid flies to clumped and isolated cricket songs. Z Tierpsychol 55:365–375.

    Article  Google Scholar 

  • Campbell DJ, Clark DJ (1971) Nearest neighbour tests of significance for non-randomness in the distribution of singing crickets [Teleogryllus commodus (Walker)]. Anim Behav 19:750–756.

    Article  Google Scholar 

  • Canard-Coruna S, Lewy S, Vermorel J, Parmentier G (1990) Long range sound propagation near the ground. Noise Control Eng 34:111–119.

    Article  Google Scholar 

  • Dadour IR, Bailey WJ (1985) Male agonistic behavior of the bushcricket Mygalopsis marki Bailey in response to conspecific song (Orthoptera: Tettigoniidae). Z Tierpsychol 70:320–330.

    Google Scholar 

  • Doherty J, Hoy RR (1985) Communication in insects: III. The auditory behavior of crickets: some views of genetic coupling, song recognition, and predator detection. Q Rev Biol 60:457–472.

    Article  Google Scholar 

  • Doolan JM (1981) Male spacing and the influence of female courtship behavior in the bladder cicada Cystosoma saundersii Westwood. Behav Ecol Sociobiol 9:269–276.

    Article  Google Scholar 

  • Doolan JM, MacNally RC (1981) Spatial dynamics and breeding ecology in the cicada Cystosoma saundersii: the interaction between distributions of resources and intraspecific behavior. J Anim Ecol 50:925–940.

    Article  Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355.

    Article  Google Scholar 

  • Embleton TFW (1996) Tutorial on sound propagation outdoors. J Acoust Soc Am 100:31–48.

    Article  Google Scholar 

  • Embleton TFW, Piercy JE, Olson N (1976) Outdoor sound propagation over ground of finite impedance. J Acoust Soc Am 59:267–277.

    Article  Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:125–153.

    Article  Google Scholar 

  • Forrest TG (1983) Calling songs and mate choice in mole crickets. In: Gwynne DT, Morris GK (eds) Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects. Boulder, CO: Westview Press, pp. 185–304.

    Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654.

    Google Scholar 

  • Forrest TG, Green DM (1991) Sexual selection and female choice in mole crickets (Scapteriscus: Gryllotalpidae): modelling the effects of intensity and male spacing. Bioacoustics 3:93–109.

    Article  Google Scholar 

  • Garstang M, Larom D, Raspet R, Lindeque M (1995) Atmospheric controls on elephant communication. J Exp Biol 198:939–951.

    PubMed  CAS  Google Scholar 

  • Gogala M, Riede K (1995) Time sharing of song activity by cicadas in Temengor Forest Reserve, Hulu Perak, and Sabah, Malaysia. Malay Nat J 48:297–305.

    Google Scholar 

  • Greenfield MD (1988) Interspecific acoustic interactions among katydids (Neoconocephalus): inhibition-induced shifts in diel periodicity. Anim Behav 36:684–695.

    Article  Google Scholar 

  • Greenfield MD (1990) Evolution of acoustic communication in the genus Neoconocephalus: discontinuous songs, synchrony, and interspecific interactions. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: Biology, Systematics and Evolution. Bathurst: Crawford House Press, pp. 71–98.

    Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Gwynne DT, Edwards ED (1986) Ultrasound production by genital stridulation in Syntonarcha iriastis (Lepidoptera, Pyralidae): long-distance signalling by male moths? Zool J Linn Soc 88:363–376.

    Article  Google Scholar 

  • Harris CM (1966) Absorption of sound in air versus humidity and temperature. J Acoust Soc Am 40:148–159.

    Article  Google Scholar 

  • Heller KG (1992) Risk shift between males and females in the pair-forming behavior of bushcrickets. Naturwissenschaften 79:89–91.

    Article  Google Scholar 

  • Heller KG, Helversen D von (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behav Ecol Sociobiol 18:189–198.

    Article  Google Scholar 

  • Helversen D von, Helversen O von (1983) Species recognition and acoustic localization in acridid grasshoppers. A behavioral approach. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 95–102.

    Chapter  Google Scholar 

  • Helversen D von (1993) “Absolute steepness” of ramps as an essential cue for auditory pattern recognition by a grasshopper (Orthoptera; Acrididae; Chorthippus biguttulus L.). J Comp Physiol A 172:633–639.

    Article  Google Scholar 

  • Henwood K, Fabrik A (1979) A quantitative analysis of the dawn chorus: temporal selection for communicatory optimization. Am Nat 114:260–274.

    Article  Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 115–129.

    Chapter  Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behavior of the bushcricket Tettigonia cantans. II. Transmission of airborne sound and vibration signals in the biotope. Behav Processes 8:125–145.

    Article  Google Scholar 

  • Lakes-Harlan R, Heller KG (1992) Ultrasound sensitive ears in a parasitoid fly. Naturwissenschaften 79:224–226.

    Article  Google Scholar 

  • Lang F (1996) Grasshopper habitats: sound attenuation and acoustic communication distance. In: Elsner N, Schnitzler HU (eds) Proceedings of the 24th Göttingen Neurobiology Conference, Stuttgart. New York: Thieme-Verlag, p. 160.

    Google Scholar 

  • Langbauer WR, Payne KB, Charif RA, Rapaport L, Osborn F (1991) African elephants respond to distant playbacks of low-frequency conspecific calls. J Exp Biol 157:35–46.

    Google Scholar 

  • Latimer W, Lewis DB (1986) Song harmonic content as a parameter determining acoustic orientation behavior in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol A 158:583–591.

    Article  Google Scholar 

  • Latimer W, Sippel M (1987) Acoustic cues for female choice and male competition in Tettigonia cantans. Anim Behav 35:887–910.

    Article  Google Scholar 

  • Lighthill Mt (1953) On the energy scattered from the interaction of turbulence with sound or shock wave. Proc Cambridge Soc 49:531–551.

    Article  Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalizations. I. Temperate habitats. Behav Ecol Sociobiol 2:271–290.

    Article  Google Scholar 

  • Meister F-J, Ruhrberg W (1959) Der Einfluss von Grünanlagen auf die Ausbreitung von Geräuschen. Lärmbekämpfung 1:5–11.

    Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory Ecology. New York: Plenum Press, pp. 345–373.

    Chapter  Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 322–332.

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281.

    Article  Google Scholar 

  • Morris GK, Kerr GE, Fullard JH (1978) Phonotactic preferences of female meadow katydid (Orthoptera: Tettigoniidae: Conocephalus nigropleurum). Can J Zool 56:1479–1487.

    Article  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 108:17–34.

    Article  Google Scholar 

  • Narins P (1995) Frog communication. Sci Amer 273:62–67.

    Article  Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4:160–166.

    Article  PubMed  CAS  Google Scholar 

  • Parker GA (1983) Mate quality and mating decisions. In: Bateson P (ed) Mate Choice. Cambridge, UK: Cambridge University Press, pp. 141–164.

    Google Scholar 

  • Partridge L, Hoffmann A, Jones JS (1987) Male size and mating success in Drosophila melanogaster and D. pseudoobscura under field conditions. Anim Behav 35:468–476.

    Article  Google Scholar 

  • Paul RC, Walker TJ (1979) Arboreal singing in a burrowing cricket, Anurogryllus arboreus. J Comp Physiol 132:217–233.

    Article  Google Scholar 

  • Piercy JE, Embleton TFW, Sutherland LC (1977) Review of noise propagation in the atmosphere. J Acoust Soc Am 61:1402–1418.

    Article  Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639.

    PubMed  CAS  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432.

    Article  PubMed  CAS  Google Scholar 

  • Popov AV. Shuvalov VF, Svetlogorskaya ID, Markovich AM (1972) Acoustic behavior and auditory system of insects. Rhein-Westf Akad Wiss 53:281–306.

    Google Scholar 

  • Prozesky-Schulze L, Prozesky OPM, Anderson F, van der Merve GJJ (1975) Use of a self-made sound baffle by a tree cricket. Nature 255:142–143.

    Article  Google Scholar 

  • Rheinlaender J, Römer H (1986) Insect hearing in the field. I. The use of identified nerve cells as “biological microphones.” J Comp Physiol A 158:647–651.

    Article  Google Scholar 

  • Riede K (1995) Diversity of sound producing insects of a Bornean lowland rain forest. Proceedings of the International Conference on Tropical Rainforest Research, Brunei, Darussalam.

    Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat 115:381–399.

    Article  Google Scholar 

  • Robinson D, Rheinlaender J, Hartley JC (1986) Temporal parameters of male-female sound communication in Leptophyes punctatissima. Physiol Entomol 11:317–323.

    Article  Google Scholar 

  • Römer H (1992) Ecological constraints for the evolution of hearing and sound communication in insects. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 79–93.

    Chapter  Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Trans R Soc Lond [B] 226:179–185.

    Article  Google Scholar 

  • Römer H, Bailey WJ (1986) Insect hearing in the field. II. Male spacing behavior and correlated acoustic cues in the bushcricket Mygalopsis marki. J Comp Physiol 159:627–638.

    Article  Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444.

    Article  Google Scholar 

  • Römer H, Bailey WJ, Dadour I (1989) Insect hearing in the field. III. Masking by noise. J Comp Physiol 164:609–620.

    Article  Google Scholar 

  • Ronacher B, Römer H (1985) Spike synchronization of tympanic receptor fibres in a grasshopper (Chorthippus biguttulus L., Acrididae). A possible mechanism for detection of short gaps in model songs. J Comp Physiol 157:631–642.

    Article  CAS  Google Scholar 

  • Ryan MJ, Keddy-Hector A (1992) Directional pattern of female mate choice and the role of sensory biases. Am Nat 139:S4–S35.

    Article  Google Scholar 

  • Schatral A, Latimer W, Broughton B (1984) Spatial dispersion and agonistic contacts of male bushcrickets in the biotope. Z Tierpsych 65:204–214.

    Google Scholar 

  • Shuvalov VF, Popov AV (1973) Significance of some of the parameters of the calling songs of male crickets Gryllus bimaculatus for phonotaxis of females [in Russian]. J Evol Biochem Physiol 9:177–182.

    CAS  Google Scholar 

  • Simmons LW (1988) The calling song of the field cricket, Gryllus bimaculatus (De Geer): constraints on transmission and its role in intermale competition and female choice. Anim Behav 36:380–394.

    Article  Google Scholar 

  • Staaden van MJ, Römer H (1997) Sexual signalling in bladder grashoppers: tactical design for maximizing calling range. J Exp Biol 200:2597–2608.

    PubMed  Google Scholar 

  • Thiele DR, Bailey WJ (1980) The function of sound in male spacing behavior of buschcrickets (Tettigoniidae: Orthoptera). Aust J Ecol 5:275--286.

    Article  Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket. II. Simplicity of calling song recognition in Cryllus, and anormalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146:361–376.

    Article  Google Scholar 

  • Werner A, Elsner N (1995) Directional hearing of the grasshopper Chorthippus biguttulus (L.). II. A biological microphone. In: Elsner N, Menzel R (eds). Proceedings of the 23rd Göttingen Neurobiology Conference, Stuttgart. New York: Thieme-Verlag, p. 277.

    Google Scholar 

  • West-Eberhard MJ (1984) Sexual selection, competitive communication and species-specific signals in insects. In: Lewis T (ed) Insect Communication. London: Academic Press, pp. 283–324.

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94.

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: sound transmission and signal detection. In: Kroodsma DE, Miller EH, Quellet H (eds) Acoustic Communication in Birds. New York: Academic Press, pp. 131–181.

    Google Scholar 

  • Willmer PG (1982) Mtcroclimate and the environmental physiology of insects. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in Insect Physiology. London: Academic Press, 16: pp 1–57.

    Google Scholar 

  • Young AM (1981) Temporal selection for communicatory optimisation: the dawn-dusk chorus as an adaptation in tropical cicadas. Am Nat 117:826–829.

    Article  Google Scholar 

  • Young D, Hill KG (1977) Structure and function of the auditory system of the cicada, Cystosoma saundersii. J Comp Physiol 117:23–45.

    Article  Google Scholar 

  • Zhantiev RD, Dubrovin NN (1977) Sound communication in the genus Isophya (Orthopters, Tettigoniidae) [in Russian]. Zool Zumal 56:40–51.

    Google Scholar 

  • Zimmermann U, Rheinlaender J, Robinson D (1989) Cues for male phonotaxis in the duetting bushcricket Leptophyes punctatissima. J Comp Physiol A 164:621–628.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Römer, H. (1998). The Sensory Ecology of Acoustic Communication in Insects. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0585-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0585-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6828-4

  • Online ISBN: 978-1-4612-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics