Skip to main content

Scaling Hypre’s Multigrid Solvers to 100,000 Cores

  • Chapter
High-Performance Scientific Computing

Abstract

The hypre software library (http://www.llnl.gov/CASC/hypre/) is a collection of high performance preconditioners and solvers for large sparse linear systems of equations on massively parallel machines. This paper investigates the scaling properties of several of the popular multigrid solvers and system building interfaces in hypre on two modern parallel platforms. We present scaling results on over 100,000 cores and even solve a problem with over a trillion unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, S.F., Falgout, R.D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124(1), 145–159 (1996) UCRL-JC-122359

    Google Scholar 

  2. Baker, A., Falgout, R., Gamblin, T., Kolev, T., Schulz, M., Yang, U.M.: Scaling algebraic multigrid solvers: On the road to exascale. In: Wittum, G. (ed.) Competence in High Performance Computing 2010. Springer, Berlin (2012). LLNL-PROC-463941

    Google Scholar 

  3. Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M.: Multigrid smoothers for ultra-parallel computing. SIAM J. Sci. Comput. 33, 2864–2887 (2011). LLNL-JRNL-473191

    Article  Google Scholar 

  4. Baker, A.H., Falgout, R.D., Yang, U.M.: An assumed partition algorithm for determining processor inter-communication. Parallel Comput. 32(5–6), 394–414 (2006). UCRL-JRNL-215757

    Article  MathSciNet  Google Scholar 

  5. Baker, A.H., Gamblin, T., Schulz, M., Yang, U.M.: Challenges of scaling algebraic multigrid across modern multicore architectures. In: 25th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorge, AK, USA, 16–20 May, 2011 – Conference Proceedings, pp. 275–286, IEEE, 2011. LLNL-CONF-458074

    Google Scholar 

  6. Baker, A.H., Schulz, M., Yang, U.M.: On the performance of an algebraic multigrid solver on multicore clusters. In: Palma, J.M.L.M., et al. (ed.) VECPAR 2010. Lecture Notes in Computer Science, vol. 6449, pp. 102–115. Springer, Berlin (2011). http://vecpar.fe.up.pt/2010/papers/24.php

    Google Scholar 

  7. Baldwin, C., Brown, P.N., Falgout, R.D., Jones, J., Graziani, F.: Iterative linear solvers in a 2D radiation-hydrodynamics code: methods and performance. J. Comput. Phys. 154, 1–40 (1999) UCRL-JC-130933

    Article  MATH  Google Scholar 

  8. Brandt, A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D.J. (ed.) Sparsity and Its Applications. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  9. Brown, P.N., Falgout, R.D., Jones, J.E.: Semicoarsening multigrid on distributed memory machines. SIAM J. Sci. Comput. 21(5), 1823–1834 (2000). Special issue on the Fifth Copper Mountain Conference on Iterative Methods. UCRL-JC-130720

    Article  MathSciNet  MATH  Google Scholar 

  10. Falgout, R., Jones, J., Yang, U.M.: Pursuing scalability for hypre’s conceptual interfaces. ACM Trans. Math. Softw. 31, 326–350 (2005)

    Article  MATH  Google Scholar 

  11. Falgout, R.D.: An introduction to algebraic multigrid. Comput. Sci. Eng. 8(6), 24–33 (2006). Special issue on Multigrid Computing. UCRL-JRNL-220851

    Article  Google Scholar 

  12. Falgout, R.D., Jones, J.E.: Multigrid on massively parallel architectures. In: Dick, E., Riemslagh, K., Vierendeels, J. (eds.) Multigrid Methods VI. Lecture Notes in Computational Science and Engineering, vol. 14, pp. 101–107. Springer, Berlin (2000). Proc. of the Sixth European Multigrid Conference held in Gent, Belgium, September 27-30, 1999. UCRL-JC-133948

    Chapter  Google Scholar 

  13. Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Modeling the performance of an algebraic multigrid cycle on HPC platforms. In: Proceedings of the International Conference on Supercomputing (ICS 2011), pp. 172–181. ACM, New York (2011)

    Google Scholar 

  14. Henson, V., Yang, U.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/

  16. Kolev, T., Vassilevski, P.: Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27, 604–623 (2009). Special issue on Adaptive and Multilevel Methods in Electromagnetics. Also available as a Lawrence Livermore National Laboratory technical report UCRL-JRNL-237306

    Article  MathSciNet  MATH  Google Scholar 

  17. Meier, U., Sameh, A.: The behavior of conjugate gradient algorithms on a multivector processor with a hierarchical memory. J. Comput. Appl. Math. 24, 13–32 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. Philadelphia, SIAM (1987)

    Chapter  Google Scholar 

  19. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Schaffer, S.: A semi-coarsening multigrid method for elliptic partial differential equations with highly discontinuous and anisotropic coefficients. SIAM J. Sci. Comput. 20(1), 228–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sequoia: ASC sequoia benchmark codes. https://asc.llnl.gov/sequoia/benchmarks/

  22. Sterck, H.D., Falgout, R.D., Nolting, J.W., Yang, U.M.: Distance-two interpolation for parallel algebraic multigrid. Numer. Linear Algebra Appl. 15(2–3), 115–139 (2008). Special issue on Multigrid Methods. UCRL-JRNL-230844

    Article  MathSciNet  MATH  Google Scholar 

  23. Sterck, H.D., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 1019–1039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stüben, K.: Algebraic multigrid (AMG): an introduction with applications. In: Hackbusch, U., Oosterlee, C., Schueller, A. (eds.) Multigrid. Academic Press, San Diego (2000)

    Google Scholar 

  25. Yang, U.: Parallel algebraic multigrid methods – high performance preconditioners. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, vol. 51, pp. 209–236. Springer, Berlin (2006)

    Chapter  Google Scholar 

  26. Yang, U.M.: On long range interpolation operators for aggressive coarsening. Numer. Linear Algebra Appl. 17, 453–472 (2010). LLNL-JRNL-417371

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-479591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison H. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Baker, A.H., Falgout, R.D., Kolev, T.V., Yang, U.M. (2012). Scaling Hypre’s Multigrid Solvers to 100,000 Cores. In: Berry, M., et al. High-Performance Scientific Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2437-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2437-5_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2436-8

  • Online ISBN: 978-1-4471-2437-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics