Skip to main content

Control of Vertebrate Hox Clusters by Remote and Global Cis-Acting Regulatory Sequences

  • Chapter
Hox Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 689))

Abstract

Despite apparently shared structural organisation and functional roles, vertebrate Hox genes are controlled by regulatory mechanisms rather distinct from those of the prototypic Drosophila Antennapedia (ANT-C) and Bithorax (BX-C) Complexes. If individual regulatory modules have been shown to recapitulate specific Hox expression patterns, other experimental studies underscore that vertebrate Hox clusters are controlled in many of their functions in a global manner, through distinct mechanisms. We will discuss the different models that have been proposed to account for these global regulatory modes. In this context, the studies of the regulation of the HoxD complex during limb development highlighted the role of global regulatory elements and the different mechanisms associated to transform a structural organisation into distinct temporal and spatial expression domains. We will further discuss how these mechanisms may have benefited from the structure of the vertebrate homeotic clusters and reciprocally contribute to shape their evolution towards an increased level of organisation and compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276:565–70.

    Article  CAS  PubMed  Google Scholar 

  2. McGinnis W, Levine MS, Hafen E et al. A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 1984; 308:428–33.

    Article  CAS  PubMed  Google Scholar 

  3. Scott MP, Weiner AJ. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 1984; 81:4115–9.

    Article  CAS  PubMed  Google Scholar 

  4. Duboule D, Baron A, Mahl P et al. A new homeo-box is present in overlapping cosmid clones which define the mouse Hox-1 locus. Embo J 1986; 5:1973–80.

    CAS  PubMed  Google Scholar 

  5. Boncinelli E, Somma R, Acampora D et al. Organization of human homeobox genes. Hum Reprod 1988; 3:880–6.

    CAS  PubMed  Google Scholar 

  6. Akam M. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 1989; 57:347–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gaunt SJ, Krumlauf R, Duboule D. Mouse homeo-genes within a subfamily, Hox-1.4,-2.6 and-5.1, display similar anteroposterior domains of expression in the embryo, but show stage-and tissue-dependent differences in their regulation. Development 1989; 107:131–41.

    CAS  PubMed  Google Scholar 

  8. Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 1989; 57:367–78.

    Article  CAS  PubMed  Google Scholar 

  9. Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191–201.

    Article  CAS  PubMed  Google Scholar 

  10. Deschamps J. Ancestral and recently recruited global control of the Hox genes in development. Curr Opin Genet Dev 2007; 422–7.

    Google Scholar 

  11. Duboule D. Vertebrate Hox gene regulation: clustering and/or colinearity? Curr Opin Genet Dev 1998; 8:514–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ikuta T, Yoshida N, Satoh N et al. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci USA 2004; 101:15118–23.

    Article  CAS  PubMed  Google Scholar 

  13. Lemons D, McGinnis W. Genomic evolution of Hox gene clusters. Science 2006; 313:1918–22.

    Article  CAS  PubMed  Google Scholar 

  14. Seo HC, Edvardsen RB, Maeland AD et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 2004; 431:67–71.

    Article  CAS  PubMed  Google Scholar 

  15. Renucci A, Zappavigna V, Zakany J et al. Comparison of mouse and human HOX-4 complexes defines conserved sequences involved in the regulation of Hox-4.4. Embo J 1992; 11:1459–68.

    CAS  PubMed  Google Scholar 

  16. Tuggle CK, Zakany J, Cianetti L et al. Region-specific enhancers near two mammalian homeo box genes define adjacent rostrocaudal domains in the central nervous system. Genes Dev 1990; 4:180–9.

    Article  CAS  PubMed  Google Scholar 

  17. Whiting J, Marshall H, Cook M et al. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev 1991; 5:2048–59.

    Article  CAS  PubMed  Google Scholar 

  18. Zakany J, Tuggle CK, Patel MD et al. Spatial regulation of homeobox gene fusions in the embryonic central nervous system of transgenic mice. Neuron 1988; 1:679–91.

    Article  CAS  PubMed  Google Scholar 

  19. Puschel AW, Balling R, Gruss P. Separate elements cause lineage restriction and specify boundaries of Hox-1.1 expression. Development 1991; 112:279–87.

    CAS  PubMed  Google Scholar 

  20. Wada H, Garcia-Fernandez J, Holland PW. Colinear and segmental expression of amphioxus Hox genes. Dev Biol 1999; 213:131–41.

    Article  CAS  PubMed  Google Scholar 

  21. Shippy TD, Ronshaugen M, Cande J et al. Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev Genes Evol 2008; 127–39.

    Google Scholar 

  22. Irvine SQ, Martindale MQ. Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 2000; 217:333–51.

    Article  CAS  PubMed  Google Scholar 

  23. Duboule D. The rise and fall of Hox gene clusters. Development 2007; 2549–60.

    Google Scholar 

  24. Kmita M, Duboule D. Organizing axes in time and space; 25 years of colinear tinkering. Science 2003;331–3.

    Google Scholar 

  25. Simeone A, Acampora D, Arcioni L et al. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990; 346:763–6.

    Article  CAS  PubMed  Google Scholar 

  26. Papalopulu N, Lovell-Badge R, Krumlauf R. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res 1991; 19:5497–506.

    Article  CAS  PubMed  Google Scholar 

  27. Marshall H, Nonchev S, Sham MH et al. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 1992; 360:737–41.

    Article  CAS  PubMed  Google Scholar 

  28. Langston AW, Gudas LJ. Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev 1994; 4:550–5.

    Article  CAS  PubMed  Google Scholar 

  29. Marshall H, Studer M, Popperl H et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 1994; 370:567–71.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang F, Popperl H, Morrison A et al. Elements both 5’ and 3’ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech Dev 1997; 67:49–58.

    Article  CAS  PubMed  Google Scholar 

  31. Oosterveen T, Niederreither K, Dollé P et al. Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. EMBO J 2003; 262–9.

    Google Scholar 

  32. Oosterveen T, van Vliet P, Deschamps J et al. The direct context of a Hox retinoic acid response element is crucial for its activity. J Biol Chem 2003; 278:24103–7.

    Article  CAS  PubMed  Google Scholar 

  33. Gould A, Itasaki N, Krumlauf R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 1998; 21:39–51.

    Article  CAS  PubMed  Google Scholar 

  34. Roelen BA, de Graaff W, Forlani S et al. Hox cluster polarity in early transcriptional availability: a high order regulatory level of clustered Hox genes in the mouse. Mech Dev 2002; 81–90.

    Google Scholar 

  35. Kmita M, van der Hoeven F, Zákány J et al. Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev 2000; 198–211.

    Google Scholar 

  36. Manzanares M, Wada H, Itasaki N et al. Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature 2000; 408:854–7.

    Article  CAS  PubMed  Google Scholar 

  37. Duboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl 1994; 135–42.

    Google Scholar 

  38. van der Hoeven F, Zákány J, Duboule D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 1996; 1025–35.

    Google Scholar 

  39. Kondo T, Duboule D. Breaking colinearity in the mouse HoxD complex. Cell 1999; 407–17.

    Google Scholar 

  40. Forlani S, Lawson KA, Deschamps J. Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 2003; 3807–19.

    Google Scholar 

  41. Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004; 18:1119–30.

    Article  CAS  PubMed  Google Scholar 

  42. Chambeyron S, Da Silva NR, Lawson KA et al. Nuclear re-organisation of the HoxB complex during mouse embryonic development. Development 2005; 132:2215–23.

    Article  CAS  PubMed  Google Scholar 

  43. Morey C, Da Silva NR, Perry P et al. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 2007; 909–19.

    Google Scholar 

  44. Morey C, Da Silva NR, Kmita M et al. Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into HoxD. J Cell Sci 2008; 571–7.

    Google Scholar 

  45. Sharpe J, Nonchev S, Gould A et al. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. Embo J 1998; 17:1788–98.

    Article  CAS  PubMed  Google Scholar 

  46. Gould A, Morrison A, Sproat G et al. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 1997; 11:900–13.

    Article  CAS  PubMed  Google Scholar 

  47. Gerard M, Chen JY, Gronemeyer H et al. In vivo targeted mutagenesis of a regulatory element required for positioning the Hoxd-11 and Hoxd-10 expression boundaries. Genes Dev 1996; 10:2326–34.

    Article  CAS  PubMed  Google Scholar 

  48. Mann RS. Why are Hox genes clustered? Bioessays 1997; 19:661–4.

    Article  CAS  PubMed  Google Scholar 

  49. Zakany J, Duboule D. Hox genes in digit development and evolution. Cell Tissue Res 1999; 296:19–25.

    Article  CAS  PubMed  Google Scholar 

  50. Zakany J, Duboule D. Hox genes and the making of sphincters. Nature 1999; 401:761–2.

    Article  CAS  PubMed  Google Scholar 

  51. Dolle P, Izpisua-Belmonte JC, Falkenstein H et al. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 1989; 342:767–72.

    Article  CAS  PubMed  Google Scholar 

  52. Dolle P, Izpisua-Belmonte JC, Boncinelli E et al. The Hox-4.8 gene is localized at the 5’ extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. Mech Dev 1991; 36:3–13.

    Article  CAS  PubMed  Google Scholar 

  53. Nelson CE, Morgan BA, Burke AC et al. Analysis of Hox gene expression in the chick limb bud. Development 1996; 122:1449–66.

    CAS  PubMed  Google Scholar 

  54. Spitz F, Gonzalez F, Peichel C et al. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev 2001;2209–14.

    Google Scholar 

  55. Lee AP, Koh EG, Tay A et al. Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proc Natl Acad Sci USA 2006; 6994–9.

    Google Scholar 

  56. Spitz F, Montavon T, Monso-Hinard C et al. A t(2; 8) balanced translocation with breakpoints near the human HOXD complex causes mesomelic dysplasia and vertebral defects. Genomics, 2002; 493–8.

    Google Scholar 

  57. Dlugaszewska B, Silahtaroglu A, Menzel C et al. Breakpoints around the HOXD cluster result in various limb malformations. J Med Genet 2006; 111–8.

    Google Scholar 

  58. Spitz F, Herkenne C, Morris MA et al. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 2005; 889–93.

    Google Scholar 

  59. Di-Poï N, Zákány J, Duboule D. Distinct roles and regulations for HoxD genes in metanephric kidney development. PLoS Genet 2007; e232.

    Google Scholar 

  60. Gonzalez F, Duboule D, Spitz F. Transgenic analysis of Hoxd gene regulation during digit development. Dev Biol 2007; 306(2):847–59.

    Article  CAS  PubMed  Google Scholar 

  61. Spitz F, Gonzalez F, Duboule D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 2003; 405–17.

    Google Scholar 

  62. Carvajal JJ, Cox D, Summerbell D et al. A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development 2001; 128:1857–68.

    CAS  PubMed  Google Scholar 

  63. Uchikawa M, Ishida Y, Takemoto T et al. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 2003; 4:509–19.

    Article  CAS  PubMed  Google Scholar 

  64. Monge I, Kondo T, Duboule D. An enhancer-titration effect induces digit-specific regulatory alleles of the HoxD cluster. Dev Biol 2003; 256:212–20.

    Article  CAS  PubMed  Google Scholar 

  65. Kmita M, Tarchini B, Duboule D et al. Evolutionary conserved sequences are required for the insulation of the vertebrate HoxD complex in neural cells. Development 2002; 5521–8.

    Google Scholar 

  66. Kmita M, Fraudeau N, Hérault Y et al. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 2002; 145–50.

    Google Scholar 

  67. Favier B, Le Meur M, Chambon P et al. Axial skeleton homeosis and forelimb malformations in Hoxd-11 mutant mice. Proc Natl Acad Sci USA 1995; 92:310–4.

    Article  CAS  PubMed  Google Scholar 

  68. Davis AP, Capecchi MR. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of Hoxd-11. Development 1994; 120:2187–98.

    CAS  PubMed  Google Scholar 

  69. Kondo T, Dollé P, Zákány J et al. Function of posterior Hoxd genes in the morphogenesis of the anal sphincter. Development 1996; 2651–9.

    Google Scholar 

  70. Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10:358–64.

    Article  CAS  PubMed  Google Scholar 

  71. Palstra RJ, de Laat W, Grosveld F. Chapter 4 beta-globin regulation and long-range interactions. Adv Genet 2008; 107–42.

    Google Scholar 

  72. Montavon T, Le Garrec JF, Kerszberg M et al. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 2008; 346-59.

    Google Scholar 

  73. Tarchini B, Duboule D. Control of Hoxd genes’ collinearity during early limb development. Dev Cell 2006; 93-103.

    Google Scholar 

  74. Bergeron J, Clappier E, Cauwelier B et al. HOXA cluster deregulation in T-ALL associated with both a TCRD-HOXA and a CALM-AF10 chromosomal translocation. Leukemia 2006; 20:1184–7.

    Article  CAS  PubMed  Google Scholar 

  75. Poppe B, Yigit N, De Moerloose B et al. HOXA gene cluster rearrangement in a t(7; 9)(p15; q34) in a child with MDS. Cancer Genet Cytogenet 2005; 162:82–4.

    Article  CAS  PubMed  Google Scholar 

  76. Yue Y, Farcas R, Thiel G et al. De novo t(12; 17)(p13.3; q21.3) translocation with a breakpoint near the 5’ end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations. Eur J Hum Genet 2007; 15:570–7.

    Article  CAS  PubMed  Google Scholar 

  77. McEwen GK, Woolfe A, Goode D et al. Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res 2006; 16:451–65.

    Article  CAS  PubMed  Google Scholar 

  78. Lehoczky JA, Williams ME, Innis JW. Conserved expression domains for genes upstream and within the HoxA and HoxD clusters suggests a long-range enhancer existed before cluster duplication. Evol Dev 2004; 423–30.

    Google Scholar 

  79. Suster ML, Kania A, Liao M et al. A novel conserved evx1 enhancer links spinal interneuron morphology and cis-regulation from fish to mammals. Dev Biol 2009; 325:422–33.

    Article  CAS  PubMed  Google Scholar 

  80. Sordino P, van der Hoeven F, Duboule D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 1995; 375:678–81.

    Article  CAS  PubMed  Google Scholar 

  81. Davis MC, Dahn RD, Shubin NH. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 2007; 473–6.

    Google Scholar 

  82. Freitas R, Zhang G, Cohn MJ. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PLoS ONE 2007; e754.

    Google Scholar 

  83. Ahn D, Ho RK. Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 2008; 322:220–33.

    Article  CAS  PubMed  Google Scholar 

  84. Amemiya CT, Prohaska SJ, Hill-Force A et al. The amphioxus Hox cluster: characterization, comparative genomics and evolution. J Exp Zoolog B Mol Dev Evol 2008; 310:465–77.

    Article  CAS  Google Scholar 

  85. Kmita M, Kondo T, Duboule D. Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nat Genet 2000; 26:451–4.

    Article  CAS  PubMed  Google Scholar 

  86. McIntyre DC, Rakshit S, Yallowitz AR et al. Hox patterning of the vertebrate rib cage. Development 2007; 134:2981–9.

    Article  CAS  PubMed  Google Scholar 

  87. Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 2003; 301:363–7.

    Article  CAS  PubMed  Google Scholar 

  88. Maconochie MK, Nonchev S, Studer M et al. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 1997; 11:1885–95.

    Article  CAS  PubMed  Google Scholar 

  89. Tumpel S, Cambronero F, Ferretti E et al. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2007; 302:646–60.

    Article  PubMed  CAS  Google Scholar 

  90. Yekta S, Tabin CJ, Bartel DP. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 2008; 9:789–96.

    Article  CAS  PubMed  Google Scholar 

  91. Rinn JL, Kertesz M, Wang JK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:1311–23.

    Article  CAS  PubMed  Google Scholar 

  92. Visel A, Blow MJ, Li Z et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009; 457:854–8.

    Article  CAS  PubMed  Google Scholar 

  93. Yamagishi T, Ozawa M, Ohtsuka C et al. Evx2-Hoxd13 intergenic region restricts enhancer association to Hoxd13 promoter. PLoS ONE 2007; 2:e175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Spitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Spitz, F. (2010). Control of Vertebrate Hox Clusters by Remote and Global Cis-Acting Regulatory Sequences. In: Deutsch, J.S. (eds) Hox Genes. Advances in Experimental Medicine and Biology, vol 689. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6673-5_4

Download citation

Publish with us

Policies and ethics