Skip to main content

Molecular Signatures of Hepatocellular Carcinoma Metastasis

  • Chapter
  • First Online:
Molecular Genetics of Liver Neoplasia

Part of the book series: Cancer Genetics ((CANGENETICS))

Abstract

Metastasis is a significant contributor to morbidity and mortality among cancer patients. Such patients are often considered incurable with treatments offering either supportive care or aggressive management without curative intent. Over the last several decades, research in the metastasis field has expanded our knowledge of cancer progression mechanisms; however, the translation of this knowledge into effective anti-metastasis therapies has not been swift. In fact, to add to the complexity of metastasis, recent findings have challenged the classic notion of clonal evolution whereby liver metastases develop during late stages of carcinogenesis. In this chapter, we evaluate several metastasis models and where applicable, describe how high-throughput molecular profiling technology has shed light on and provided prognostic value for this multifaceted process, with emphasis on the liver. The resolution of metastasis will have a large impact on clinical advances, specifically in targeted anti-metastasis therapies to benefit patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Alfa GK, Venook AP (2008) The impact of new data in the treatment of advanced hepatocellular carcinoma. Curr Oncol Rep 10:199–205

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676

    Article  PubMed  CAS  Google Scholar 

  • Battaglia S, Benzoubir N, Nobilet S et al (2009) Liver cancer-derived hepatitis C virus core proteins shift TGF-Beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS ONE 4:e4355

    Article  PubMed  CAS  Google Scholar 

  • Bross ID, Viadana E, Pickren JW (1975) The metastatic spread of myeloma and leukemias in men. Virchows Arch A Pathol Anat Histol 365:91–101

    Article  PubMed  CAS  Google Scholar 

  • Budhu A, Forgues M, Ye QH et al (2006) Prediction of venous metastases, recurrence and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10:99–111

    Article  PubMed  CAS  Google Scholar 

  • Budhu A, Jia HL, Forgues M et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  PubMed  CAS  Google Scholar 

  • Chambers AF, Harris JF, Ling V et al (1984) Rapid phenotype variation in cells derived from lung metastases of KHT fibrosarcoma. Invasion Metastasis 4:225–237

    PubMed  CAS  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  PubMed  CAS  Google Scholar 

  • Dave SS, Wright G, Tan B et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351:2159–2169

    Article  PubMed  CAS  Google Scholar 

  • DePinho RA (2000) The age of cancer. Nature 408:248–254

    Article  PubMed  CAS  Google Scholar 

  • Ewing J (1928) Neoplastic diseases, 6th edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    Article  PubMed  Google Scholar 

  • Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Kondo Y, Shen L et al (2008) Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. Carcinogenesis 29:1901–1910

    Article  PubMed  CAS  Google Scholar 

  • Gorunova L, Hoglund M, Andren-Sandberg A et al (1998) Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23:81–99

    Article  PubMed  CAS  Google Scholar 

  • Gregory PA, Bracken CP, Bert AG et al (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    PubMed  CAS  Google Scholar 

  • Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65:3509–3512

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Harris JF, Chambers AF, Hill RP et al (1982) Metastatic variants are generated spontaneously at a high rate in mouse KHT tumor. Proc Natl Acad Sci USA 79:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  • Heim S, Teixeira MR, Dietrich CU et al (1997) Cytogenetic polyclonality in tumors of the breast. Cancer Genet Cytogenet 95:16–19

    Article  PubMed  CAS  Google Scholar 

  • Hoshida Y, Villanueva A, Kobayashi M et al (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004

    Article  PubMed  CAS  Google Scholar 

  • Hunter K (2006) Host genetics influence tumour metastasis. Nat Rev Cancer 6:141–146

    Article  PubMed  CAS  Google Scholar 

  • Husemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Okada F, Hamada J et al (1987) Changes in the tumorigenic and metastatic properties of tumor cells treated with quercetin or 5-azacytidine. Int J Cancer 39:338–342

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Okanoue T, Ohnishi N et al (1999) Hepatic damage induced by transcatheter arterial chemoembolization elevates serum concentrations of macrophage-colony stimulating factor. Liver 19:97–103

    Article  PubMed  CAS  Google Scholar 

  • Ji J, Shi J, Budhu A et al (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Chen WD, Parmigiani G et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 105:4283–4288

    Article  PubMed  Google Scholar 

  • Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  • Kauffman EC, Robinson VL, Stadler WM et al (2003) Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol 169:1122–1133

    Article  PubMed  Google Scholar 

  • Kerbel RS, Frost P, Liteplo R et al (1984) Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J Cell Physiol Suppl 3:87–97

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW and Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  Google Scholar 

  • Komeda T, Fukuda Y, Sando T et al (1995) Sensitive detection of circulating hepatocellular carcinoma cells in peripheral venous blood. Cancer 75:2214–2219

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Heo J, Libbrecht L et al (2006a) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416

    Article  PubMed  CAS  Google Scholar 

  • Lee RC and Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  Google Scholar 

  • Lee SK, Kim MH, Cheong JY et al (2009) Integrin alpha V polymorphisms and haplotypes in a Korean population are associated with susceptibility to chronic hepatitis and hepatocellular carcinoma. Liver Int 29:187–195

    Article  PubMed  CAS  Google Scholar 

  • Lee TK, Poon RT, Yuen AP et al (2006b) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12:5369–5376

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA (1985) Mechanisms of cancer invasion and metastasis. Important Adv Oncol 28–41

    Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  • Marshall J (2005) The role of bevacizumab as first-line therapy for colon cancer. Semin Oncol 32:S43–S47

    Article  PubMed  CAS  Google Scholar 

  • Maser RS and DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297:565–569

    Article  Google Scholar 

  • Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    Article  PubMed  CAS  Google Scholar 

  • Metzler M, Wilda M, Busch K et al (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39:167–169

    Article  PubMed  CAS  Google Scholar 

  • Michael MZ, O' Connor SM, Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  • Moribe T, Iizuka N, Miura T et al (2008) Identification of novel aberrant methylation of BASP1 and SRD5A2 for early diagnosis of hepatocellular carcinoma by genome-wide search. Int J Oncol 33:949–958

    PubMed  CAS  Google Scholar 

  • Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  • Park YG, Zhao X, Lesueur F et al (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Philip PA, Mahoney MR, Allmer C et al (2005) Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 23:6657–6663

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  • Scheel C, Onder T, Karnoub A et al (2007) Adaptation versus selection: the origins of metastatic behavior. Cancer Res 67:11476–11479

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Kittler O, Ragg T, Daskalakis A et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100:7737–7742

    Article  PubMed  CAS  Google Scholar 

  • Sharp JA, Sung V, Slavin J et al (1999) Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab Invest 79:869–877

    PubMed  CAS  Google Scholar 

  • Singhal H, Bautista DS, Tonkin KS et al (1997) Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3:605–611

    PubMed  CAS  Google Scholar 

  • Sonoki T, Iwanaga E, Mitsuya H et al (2005) Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19:2009–2010

    Article  PubMed  CAS  Google Scholar 

  • Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3:55–63

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Wu J, Zhang T et al (2008) High-resolution analysis of genomic profiles of hepatocellular carcinoma cells with differential osteopontin expression. Cancer Biol Ther 7:387–391

    Article  PubMed  Google Scholar 

  • Takafuji V, Forgues M, Unsworth E et al (2007) An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26:6361–6371

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  • Talmadge JE, Donkor M, and Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26:373–400

    Article  PubMed  Google Scholar 

  • Tang ZY, Ye SL, Liu YK et al (2004) A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 130:187–196

    Article  PubMed  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  • Thomas MB, Chadha R, Glover K et al (2007) Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 110:1059–1067

    Article  PubMed  CAS  Google Scholar 

  • Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31:339–346

    Article  PubMed  CAS  Google Scholar 

  • Trainer DL, Kline T, Hensler G et al (1988) Clonal analysis of the malignant properties of B16 melanoma cells treated with the DNA hypomethylating agent 5-azacytidine. Clin Exp Metastasis 6:185–200

    Article  PubMed  CAS  Google Scholar 

  • Tsai WC, Hsu PW, Lai TC et al (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49:1571–1582

    Article  PubMed  CAS  Google Scholar 

  • Urquidi V, Sloan D, Kawai K et al (2002) Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clin Cancer Res 8:61–74

    PubMed  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, Van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  • Van de Vijver MJ, He YD, Van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  • van de Wouw AJ, Janssen-Heijnen ML, Coebergh JW et al (2002) Epidemiology of unknown primary tumours; incidence and population-based survival of 1285 patients in Southeast Netherlands, 1984–1992. Eur J Cancer 38:409–413

    Article  PubMed  Google Scholar 

  • Vander BS, Komuta M, Libbrecht L et al (2008) Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int 28:1370–1380

    Article  CAS  Google Scholar 

  • Vignali DA, Collison LW, and Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  PubMed  CAS  Google Scholar 

  • Villanueva A, Chiang DY, Newell P et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135:1972–83:1983

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  • Vona G, Estepa L, Beroud C et al (2004) Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39:792–797

    Article  PubMed  Google Scholar 

  • Wang XW and Thorgeirsson SS (2009) Transcriptome analysis of liver cancer: ready for the clinic? J Hepatol 50:1062–1064

    Article  CAS  Google Scholar 

  • Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905

    Article  PubMed  CAS  Google Scholar 

  • Wong IH, Leung T, Ho S et al (1997) Semiquantification of circulating hepatocellular carcinoma cells by reverse transcriptase polymerase chain reaction. Br J Cancer 76:628–633

    PubMed  CAS  Google Scholar 

  • Yamashita T, Budhu A, Forgues M et al (2007) Activation of hepatic stem cell marker EpCAM by Wnt-ß-catenin signaling in hepatocellular carcinoma. Cancer Res 67:10831–10839

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Forgues M, Wang W et al (2008) EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68:1451–1461

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Ji J, Budhu A et al (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136:1012–1024

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Kaneko S, Hashimoto S et al (2001) Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun 282:647–654

    Article  PubMed  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  • Ye QH, Qin LX, Forgues M et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423

    Article  PubMed  CAS  Google Scholar 

  • Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Zhang LH, Qin LX, Ma ZC et al (2003) Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis. J Cancer Res Clin Oncol 129:279–286

    PubMed  CAS  Google Scholar 

  • Zhu AX (2008) Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 112:250–259

    Article  PubMed  CAS  Google Scholar 

  • Zhu AX, Stuart K, Blaszkowsky LS et al (2007) Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer 110:581–589

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Xu H, Xu Q et al (2008a) Expression of Twist gene in human hepatocellular carcinoma cell strains of different metastatic potential. J Huazhong Univ Sci Technolog Med Sci 28:144–146

    Article  PubMed  CAS  Google Scholar 

  • Zhu XD, Zhang JB, Zhuang PY et al (2008b) High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 26:2707–2716

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Budhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Budhu, A., Wang, X.W. (2010). Molecular Signatures of Hepatocellular Carcinoma Metastasis. In: Wang, X., Grisham, J., Thorgeirsson, S. (eds) Molecular Genetics of Liver Neoplasia. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6082-5_13

Download citation

Publish with us

Policies and ethics