Skip to main content

The Role of the Classical Complement Cascade in Synapse Loss During Development and Glaucoma

  • Conference paper
  • First Online:
Inflammation and Retinal Disease: Complement Biology and Pathology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 703))

Abstract

Glaucoma is one of the leading causes of vision loss worldwide, yet the signals that initiate the progressive degeneration of optic nerve axons and the selective loss of retinal ganglion neurons (RGCs) remain elusive. Reactive gliosis, release of inflammatory cytokines, and complement upregulation all occur in the early stages of glaucoma in several disease models. Recent work has implicated the classical complement cascade in the elimination of excess synaptic connections in the developing visual system and in early synapse loss associated with glaucoma, suggesting that mechanisms of developmental synapse elimination may be aberrantly re-activated in glaucoma. This review describes current evidence in support of this “synaptic” hypothesis and places complement in the context of other well-described mechanisms of neurodegeneration occurring in the glaucomatous eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed F, Brown KM et al (2004) Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest Ophthalmol Vis Sci 45(4):1247

    Article  PubMed  Google Scholar 

  • Alexander JJ, Anderson AJ et al (2008) The complement cascade: Yin-Yang in neuroinflammation-neuro-protection and-degeneration. J Neurochem 107(5):1169

    Article  PubMed  CAS  Google Scholar 

  • Allen NJ, Barres BA (2009) NeuroscienceGlia – more than just brain glue. Nature 457(7230):675–677

    Article  PubMed  CAS  Google Scholar 

  • Alward WLM, Fingert JH et al (1998) Clinical features associated with mutations in the ­chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 338(15):1022

    Article  PubMed  CAS  Google Scholar 

  • Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440

    Article  PubMed  CAS  Google Scholar 

  • Berkelaar M, Clarke DB et al (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14(7):4368

    PubMed  CAS  Google Scholar 

  • Bolton MML, Eroglu C (2009) Look who is weaving the neural web: glial control of synapse formation. Curr Opin Neurobiol 19(5):491–497

    Article  PubMed  CAS  Google Scholar 

  • Bosco A, Inman DM et al (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49(4):1437

    Article  PubMed  Google Scholar 

  • Buckingham BP, Inman DM et al (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28(11):2735

    Article  PubMed  CAS  Google Scholar 

  • Büchi ER, Suivaizdis I et al (1991) Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica 203(3):138

    Article  PubMed  Google Scholar 

  • Bull ND, Irvine KA et al (2009) Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma. Invest Ophthalmol Vis Sci 50(9):4244

    Article  PubMed  Google Scholar 

  • Cahoy JD, Emery B et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264

    Article  PubMed  CAS  Google Scholar 

  • Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986

    Article  PubMed  CAS  Google Scholar 

  • Chang B, Smith RS et al (2001) Haploinsufficient Bmp 4 ocular phenotypes include anterior ­segment dysgenesis with elevated intraocular pressure. BMC Genet 2(1):18

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary P, Ahmed F et al (1998) MK801 – a neuroprotectant in rat hypertensive eyes. Brain Res 792(1):154–158

    Article  PubMed  CAS  Google Scholar 

  • Chauhan BC, LeVatte TL et al (2004) Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 45(1):144–152

    Article  PubMed  Google Scholar 

  • Chiu IM, Chen A et al (2008) T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105(46):17913

    Article  PubMed  CAS  Google Scholar 

  • Chiu IM, Phatnani H et al (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci U S A 106(49):20960

    Article  PubMed  CAS  Google Scholar 

  • Christopherson KS, Ullian EM et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    Article  PubMed  CAS  Google Scholar 

  • Dalmau I, Finsen B et al (1998) Development of microglia in the postnatal rat hippocampus. Hippocampus 8(5):458–74

    Article  PubMed  CAS  Google Scholar 

  • Daniel S, Ming L-B et al (2009) The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 516(1):spc1

    Article  Google Scholar 

  • Dreyer EB, Zurakowski D et al (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114(3):299

    Article  PubMed  CAS  Google Scholar 

  • Duncan RO, Sample PA et al (2007) Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res 26(1):38–56

    Article  PubMed  Google Scholar 

  • Fan BJ, Leung YF et al (2004) Genetic and environmental risk factors for primary open-angle glaucoma. Chin Med J 117(5):706–710

    PubMed  CAS  Google Scholar 

  • Fiske BK, Brunjes PC (2000) Microglial activation in the developing rat olfactory bulb. Neuroscience 96(4):807–15

    Article  PubMed  CAS  Google Scholar 

  • Fu Q, Li X et al (2009) Synaptic degeneration of retinal ganglion cells in a rat ocular hypertension glaucoma model. Cell Mol Neurobiol 29(4):575–581

    Article  PubMed  CAS  Google Scholar 

  • Griffiths M, Neal JW et al (2007) Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82:29–55

    Article  PubMed  CAS  Google Scholar 

  • Grozdanic SD, Betts DM et al (2003) Laser-induced mouse model of chronic ocular hypertension. Invest Ophthalmol Vis Sci 44(10):4337

    Article  PubMed  Google Scholar 

  • Guo L, Salt TE et al (2007) Targeting amyloid- in glaucoma treatment. Proc Natl Acad Sci U S A 104(33):13444

    Article  PubMed  CAS  Google Scholar 

  • Hageman GS, Anderson DH et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Harada C et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117(7):1763–1770

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2(3):185–193

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Breidert T et al (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    Article  PubMed  CAS  Google Scholar 

  • Howell GR, Libby RT et al (2007a) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523

    Article  PubMed  CAS  Google Scholar 

  • Howell GR, Libby RT et al (2007b) Absence of glaucoma in DBA/2 J mice homozygous for wild-type versions of Gpnmb and Tyrp 1. BMC Genet 8(1):45

    Article  PubMed  CAS  Google Scholar 

  • Howell GR, Libby RT et al (2008) Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. Prog Brain Res 173:303

    Article  PubMed  Google Scholar 

  • Hua JY, Smith SJ (2004) Neural activity and the dynamics of central nervous system development. Nat Neurosci 7(4):327–332

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Fileta JB et al (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A 102(34):12242–12247

    Article  PubMed  CAS  Google Scholar 

  • Huberman AD, Feller MB et al (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509

    Article  PubMed  CAS  Google Scholar 

  • Imamura K, Onoe H et al (2009) Molecular imaging reveals unique degenerative changes in experimental glaucoma. Neuroreport 20(2):139

    Article  PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325(6101):253–257

    Article  PubMed  CAS  Google Scholar 

  • Jennings C (1994) Death of a synapse. Nature 372(6506):498–499

    Article  PubMed  CAS  Google Scholar 

  • Johnson EC, Deppmeier LMH et al (2000) Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 41(2):431–442

    PubMed  CAS  Google Scholar 

  • Johnson TV, Tomarev SI (2010) Rodent models of glaucoma. Brain Research Bulletin 81:349–58

    Article  PubMed  Google Scholar 

  • Kanamori A, Nakamura M et al (2005) Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. Exp Eye Res 81(1):48–56

    Article  PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Kuehn MH et al (2005) Comparative analysis of optic nerve head gene expression changes in human glaucoma and in rodent models of ocular hypertension. Invest Ophthalmol Vis Sci 46(5):44

    Google Scholar 

  • Kuehn MH, Kim CY et al (2008) Disruption of the complement cascade delays retinal ganglion cell death following retinal ischemia-reperfusion. Exp Eye Res 87(2):89–95

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MH, Kim CY et al (2006) Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp Eye Res 83(3):620–628

    Article  PubMed  CAS  Google Scholar 

  • Lam D, Jim J et al (2009) Astrocyte and microglial activation in the lateral geniculate nucleus and visual cortex of glaucomatous and optic nerve transected primates. Molecular Vision 15:2217–29

    PubMed  CAS  Google Scholar 

  • Leon S, Yin Y et al (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20(12):4615

    PubMed  CAS  Google Scholar 

  • Levkovitch-Verbin H, Harris-Cerruti C et al (2000) RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection. Invest Ophthalmol Vis Sci 41(13):4169

    PubMed  CAS  Google Scholar 

  • Levkovitch-Verbin H, Kalev-Landoy M et al (2006) Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 124(4):520

    Article  PubMed  CAS  Google Scholar 

  • Libby RT, Anderson MG et al (2005a) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(05):637–648

    Article  PubMed  Google Scholar 

  • Libby RT, Gould DB et al (2005) Complex genetics of glaucoma susceptibility. Annual Review of Genomics and Human Genetics 6:15–44

    Article  PubMed  CAS  Google Scholar 

  • Libby RT, Smith RS et al (2003) Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 299(5612):1578

    Article  PubMed  CAS  Google Scholar 

  • Lobsiger CS, Boillée S et al (2007) Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc Natl Acad Sci U S A 104(18):7319

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40(2):139–156

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi F, Lindsey JD et al (2004) Optic nerve damage in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 45(6):1841

    Article  PubMed  Google Scholar 

  • Maier M, Peng Y et al (2008) Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci 28(25):6333

    Article  PubMed  CAS  Google Scholar 

  • Maslinska D, Laure-Kamionowska M et al (1998) Morphological forms and localization of microglial cells in the developing human cerebellum. Folia Neuropathol 36(3):145–51

    PubMed  CAS  Google Scholar 

  • Mauch DH, Nagler K et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294(5545):1354

    Article  PubMed  CAS  Google Scholar 

  • McKinnon SJ (2003) Glaucoma: ocular Alzheimer’s disease. Front Biosci 8:s1140–s1156

    Article  PubMed  CAS  Google Scholar 

  • McKinnon SJ, Lehman DM et al (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43(4):1077

    PubMed  Google Scholar 

  • Morrison, JC, Moore CG et al (1997). A rat model of chronic pressure-induced optic nerve damage. Experimental Eye Research 64(1):85–96

    Article  PubMed  CAS  Google Scholar 

  • Milligan CE, Cunningham TJ et al (1991) Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol 314(1):125–35

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Hannema A et al (1999) Acquired C1 inhibitor deficiency associated with systemic lupus erythematosus, secondary antiphospholipid syndrome and IgM monoclonal paraproteinaemia. Clin Rheumatol 18(1):56–58

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Knowlton AA et al (1996) Tumor necrosis factor-alpha-induced expression of heat shock protein 72 in adult feline cardiac myocytes. Am J Physiol Heart Circ Physiol 270(4):H1231

    CAS  Google Scholar 

  • Nakazawa T, Nakazawa C et al (2006) Tumor Necrosis Factor-{alpha} mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26(49):12633–12641

    Article  PubMed  CAS  Google Scholar 

  • Naskar R, Vorwerk CK et al (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41(7):1940

    PubMed  CAS  Google Scholar 

  • Neufeld AH (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 117(8):1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434

    Article  PubMed  Google Scholar 

  • Phillips JC (2000) Four novel mutations in the PITX2 gene in patients with Axenfeld-Rieger syndrome. Ophthalmic Res 34(5):324–326

    Article  CAS  Google Scholar 

  • Pisalyaput K, Tenner AJ (2008) Complement component C1q inhibits β-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. J Neurochem 104(3):696–707

    PubMed  CAS  Google Scholar 

  • Renu A, Suresh G et al (2009) Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol 57:257–266

    Article  Google Scholar 

  • Rezaie T, Child A et al (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295(5557):1077

    Article  PubMed  CAS  Google Scholar 

  • Ricklin D, Lambris JD (2008) Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol 632:273

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675

    Article  PubMed  CAS  Google Scholar 

  • Rotshenker S (2003) Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. J Mol Neurosci 21(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ederra J, Verkman AS (2006) Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res 82(5):879–884

    Article  PubMed  CAS  Google Scholar 

  • Sahu A, Lambris JD (2000) Complement inhibitors: a resurgent concept in anti-inflammatory. Immunopharmacology 49:133–148

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Maruyama S (1994) Synapse loss in anterior horn neurons in amyotrophic lateral ­sclerosis. Acta Neuropathol 88(3):222–227

    Article  PubMed  CAS  Google Scholar 

  • Sasaoka M, Nakamura K et al (2008) Changes in visual fields and lateral geniculate nucleus in monkey laser-induced high intraocular pressure model. Exp Eye Res 86(5):770–782

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M (2004) Optic nerve crush: protection and regeneration. Brain Res Bull 62(6):467–471

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789

    Article  PubMed  CAS  Google Scholar 

  • Shimazawa M, Yamashima T et al (2005) Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage. Brain Res 1053(1–2):185–194

    Article  PubMed  CAS  Google Scholar 

  • Singhrao SK, Neal JW et al (1999) Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest 79(10):1247–1259

    PubMed  CAS  Google Scholar 

  • Smith RS, Zabaleta A et al (2000) Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum Mol Genet 9(7):1021

    Article  PubMed  CAS  Google Scholar 

  • Stasi K, Nagel D et al (2006) Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest Ophthalmol Vis Sci 47(3):1024

    Article  PubMed  Google Scholar 

  • Steele MR, Inman DM et al (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 47(3):977

    Article  PubMed  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440(7087):1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Stevens B, Allen NJ et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  PubMed  CAS  Google Scholar 

  • Tezel G, Carlo Nucci LCNNO et al (2008) TNF-[alpha] signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421

    Article  PubMed  CAS  Google Scholar 

  • Torborg CL, Feller MB (2005) Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 76(4):213–235

    Article  PubMed  Google Scholar 

  • Turner MR, Cagnin A et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609

    Article  PubMed  CAS  Google Scholar 

  • Ullian EM, Christopherson KS et al (2004) Role for glia in synaptogenesis. Glia 47(3):209–216

    Article  PubMed  Google Scholar 

  • Ullian EM, Sapperstein SK et al (2001) Control of synapse number by glia. Science 291:657–661

    Article  PubMed  CAS  Google Scholar 

  • Vorwerk CK, Lipton SA et al (1996) Chronic low-dose glutamate is toxic to retinal ganglion cells Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 37(8):1618

    PubMed  CAS  Google Scholar 

  • Webster S, Lue LF et al (1997) Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging 18(4):415–421

    Article  PubMed  CAS  Google Scholar 

  • Woldemussie E, Wijono M et al (2004) Muller cell response to laser-induced increase in intraocular pressure in rats. Glia 47(2):109–119

    Article  PubMed  Google Scholar 

  • Wyss-Coray T, Yan F et al (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci U S A 99(16):10837

    Article  PubMed  CAS  Google Scholar 

  • Yang GY, Gong C et al (1999) Tumor necrosis factor alpha expression produces increased blood–brain barrier permeability following temporary focal cerebral ischemia in mice. Mol Brain Res 69(1):135–143

    Article  PubMed  CAS  Google Scholar 

  • Yang L-B, Li R et al (2000) Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J Neurosci 20(20):7505–7509

    PubMed  CAS  Google Scholar 

  • Yoneda S, Hara H et al (2005) Vitreous fluid levels of -Amyloid (1–42) and Tau in patients with retinal diseases. Jpn J Ophthalmol 49(2):106–108

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Neufeld AH et al (2000) Tumor necrosis factor-: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32:42–50

    Article  PubMed  CAS  Google Scholar 

  • Yücel YH, Zhang Q et al (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22(4):465–481

    Article  PubMed  Google Scholar 

  • Zhong YS, Leung CK, Pang CP (2007) Glial cells and glaucomatous neuropathy. Chin Med J 120(4):326–335

    PubMed  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dorothy Schafer and Kenneth Colodner for helpful discussion and comments on the manuscript and funding from the Smith Family Foundation (B.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Rosen, A.M., Stevens, B. (2010). The Role of the Classical Complement Cascade in Synapse Loss During Development and Glaucoma. In: Lambris, J., Adamis, A. (eds) Inflammation and Retinal Disease: Complement Biology and Pathology. Advances in Experimental Medicine and Biology, vol 703. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5635-4_6

Download citation

Publish with us

Policies and ethics