Skip to main content

Bioconcentration, Bioaccumulation, and Metabolism of Pesticides in Aquatic Organisms

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 204))

Abstract

From the viewpoint of protecting the natural environment, aquatic ecotoxicological assessment of new pesticides and many existing ones has increasingly become more important. To assess the impact of pesticides on aquatic organisms, international authorities (utilizing OECD and USEPA testing guidelines) require completion of many acute and chronic ecotoxicological studies. Among such studies is testing to measure the potential for bioconcentration. In addition, the authorities in these agencies insist that physico-chemical properties and environmental fate be determined for each registered pesticide. The rationale for such testing is based on the concept that, even if used in conformance with good agricultural practices, pesticides may enter surface waters by several routes such as spray drift, surface runoff, and field drainage, and they may be partitioned to bottom sediments (Katagi 2006). The endpoints of such ecotoxicological testing include mortality and effects on hatching, development, and reproduction. Such endpoints are usually expressed as median-lethal or median-effect concentrations (LC50 and EC50) and no-observed-effect-concentrations (NOEC); such values can be compared with predicted environmental concentrations in exposure media for purposes of risk assessment (Miyamoto et al. 2008). Because aquatic organisms interact with each other in the food web, knowledge of their tendency to bioconcentrate residues in water and from dietary exposure is important when evaluating real environmental pesticide effects. In general, bioconcentration is the most popular term for describing the process by which pesticides enter organisms directly from water through the gills or through epithelial tissues. In contrast, bioaccumulation includes the effect of dietary uptake through food consumption or intake of bottom sediments (Miyamoto et al. 1990). When the levels of a pesticide, accumulated by organisms, are concentrated through two or more trophic levels in a food web, the process is referred to as biomagnification (Connell 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AM, El-Mogy M, Farid NM, El-Sharabasy M (2006) Two glutathione S-transferase isoenzymes purified from Bulinus truncates (Gastropoda: Planorbidae). Comp Biochem Physiol 143B: 76–84.

    CAS  Google Scholar 

  • Aceto A, Di Ilio C, Bucciarelli T, Pantani C, Dell’Agata M, Pannunzio G, Federiu G (1991) Characterization of glutathione transferase from Gammarus Italicus. Comp Biochem Physiol 99B: 523–527.

    CAS  Google Scholar 

  • Ahlgren G, Lundstedt L, Brett M, Forsberg C (1990) Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12: 809–818.

    Article  CAS  Google Scholar 

  • Akkanen J, Kukkonen JVK (2003) Biotransformation and bioconcentration of pyrene in Daphnia magna. Aquat Toxicol 64: 53–61.

    Article  CAS  Google Scholar 

  • Aly OA, Shehata SA, Farag H (1984) Uptake and accumulation of selected herbicides by the fresh water alga Scenedesmus. Arch Environ Contam Toxicol 13: 701–705.

    Article  CAS  Google Scholar 

  • Ambrosi D, Isensee AR, Macchia JA (1978) Distribution of oxadiazon and phosalone in an aquatic model ecosystem. J Agric Food Chem 26: 50–53.

    Article  CAS  Google Scholar 

  • Amweg EL, Weston DP, Johnason CS, You J, Lydy MJ (2006) Effect of piperonyl butoxide on permethrin toxicity in the amphipod Hyalella azteca. Environ Toxicol Chem 25: 1817–1825.

    Article  CAS  Google Scholar 

  • Anderson AC, Abdelghani AA, McDonnell D, Craig L (1981) Uptake of monosodium methanearsonate (MSMA) by vascular aquatic plants. J Plant Nutr 3: 193–201.

    Article  CAS  Google Scholar 

  • Anderson RL (1982) Toxicity of fenvalerate and permethrin to several nontarget aquatic invertebrates. Environ Entmol 11: 1251–1257.

    CAS  Google Scholar 

  • Anderson RL, DeFoe DL (1980) Toxicity and bioaccumulation of endrin and methoxychlor in aquatic invertebrates and fish. Environ Pollut 22A: 111–121.

    Google Scholar 

  • Anderson RS (1985) Metabolism of a model environmental carcinogen by bivalve molluscs. Mar Environ Res 17: 137–140.

    Article  CAS  Google Scholar 

  • Anderson TD, Zhu KY (2004) Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomus tentans (Diptera: Chironomidae). Pestic Biochem Physiol 80: 54–64.

    Article  CAS  Google Scholar 

  • Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13: 621–626.

    Article  CAS  Google Scholar 

  • Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol 110C: 149–155.

    CAS  Google Scholar 

  • Artola-Garicano E, Sinnige TL, van Holstein I, Vaes WHJ, Hermens JLM (2003) Bioconcentration and acute toxicity of polycyclic musks in two benthic organisms (Chironomus riparius and Lumbriculus variegatus). Environ Toxicol Chem 22: 1086–1092.

    CAS  Google Scholar 

  • Arts M, Ferguson ME, Glozier NE, Robarts RD, Donald DB (1995) Spatial and temporal variability in lipid dynamics of common amphipods: Assessing the potential for uptake of lipophilic contaminants. Ecotoxicol 4: 91–113.

    Article  CAS  Google Scholar 

  • Arun S, Rajendran A, Subramanian P (2006) Subcellular/tissue distribution and responses to oil exposure of the cytochrome P450-dependent monooxygenase system and glutathione S-transferase in freshwater prawns (Macrobrachium malcolmsonii, M. lamarrei lamarrei). Ecotoxicology 15: 341–346.

    Article  CAS  Google Scholar 

  • Ashauer R, Boxall A, Brown C (2006) Uptake and elimination of chlorpyrifos and pentachlorophenol into the freshwater amphipod Gammarus pulex. Arch Environ Contam Toxicol 51: 542–548.

    Article  CAS  Google Scholar 

  • Axelman J, Broman D, Näf C, Pettersen H (1995) Compound dependence of the relationship log K ow and log BCFL. Environ Sci Pollut Res 2: 33–36.

    Article  CAS  Google Scholar 

  • Baeza-Squiban A, Bouaicha N, Santa-Maria A, Marano F (1990) Demonstration of the excretion by Dunaliella bioculata of esterases implicated in the metabolism of deltamethrin, a pyrethroid insecticide. Bull Environ Contam Toxicol 45: 39–45.

    Article  CAS  Google Scholar 

  • Baeza-Squiban A, Meinard C, Marano F (1988) Metabolism of deltamethrin in two cell types in vitro. Pestic Biochem Physiol 32: 253–261.

    Article  CAS  Google Scholar 

  • Bajet CM, Navarro MP (2002) Degradation, release and bioavailability of 14C DDT and 14C DDE sediment residues to oysters and mussels. Environ Technol 23: 1293–1302.

    Article  CAS  Google Scholar 

  • Balasubramanya RH, Patil RB (1980) Degradation of carboxin and oxycarboxin by microorganisms. Plant Soil 57: 457–462.

    Article  CAS  Google Scholar 

  • Baldwin WS, LeBlanc GA (1994a) In vivo biotransformation of testosterone by phase I and II detoxication enzymes and their modulation by 20-hydroxy-ecdysone in Daphnia magna. Aquat Toxicol 29: 103–117.

    Article  CAS  Google Scholar 

  • Baldwin WS, LeBlanc GA (1994b) Identification of multiple steroid hydroxylases in Daphnia magna and their modulation by xenobiotics. Environ Toxicol Chem 13: 1013–1021.

    CAS  Google Scholar 

  • Baldwin WS, LeBlanc GA (1996) Expression and induction of an immunochemically related class of glutathione S-transferases in Daphnia magna. Comp Biochem Physiol 113B: 261–267.

    CAS  Google Scholar 

  • Baldwin WS, Milam DL, LeBlanc GA (1995) Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol. Environ Toxicol Chem 14: 945–952.

    CAS  Google Scholar 

  • Barata C, Solayan A, Porte C (2004) Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat Toxicol 66: 125–139.

    Article  CAS  Google Scholar 

  • Barber JT, Sharma HA, Ensley HE, Polito MA, Thomas DA (1995) Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere 31: 3567–3574.

    Article  CAS  Google Scholar 

  • Barbier M, Prevot P, Soyer-Gobillard MO (2000) Esterases in marine dinoflagellates and resistance to the organophosphate insecticide parathion. Int Microbiol 3: 117–123.

    CAS  Google Scholar 

  • Barron MG (1990) Bioconcentration (will water-borne organic chemicals accumulate in aquatic animals?). Environ Sci Technol 24: 1612–1618.

    Article  CAS  Google Scholar 

  • Barron MG, Hansen SC, Ball T (1991) Pharmacokinetics and metabolism of triclopyr in the crayfish (Procambarus clarkii). Drug Metab Disp 19: 163–167.

    CAS  Google Scholar 

  • Bartlett AJ, Borgmann U, Dixon DG, Batcher SP, Maguire RJ (2004) Tributyltin uptake and depuration in Hyalella azteca: Implications for experimental design. Environ Toxicol Chem 23: 426–434.

    Article  CAS  Google Scholar 

  • Barton JW, Kuritz T, O’Connor LE, Ma CY, Maskarinec MP, Davison BH (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65: 330–335.

    Article  CAS  Google Scholar 

  • Basack SB, Oneto ML, Fucks JS, Wood EJ, Kesten EM (1998) Esterases of Corbicula fluminea as biomarkers of exposure to organophosphorus pesticides. Bull Environ Contam Toxicol 61: 569–576.

    Article  CAS  Google Scholar 

  • Basack SB, Oneto ML, Verrengia Guerrero NR, Kesten EM (1997) Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea. Bull Environ Contam Toxicol 58: 498–503.

    Article  Google Scholar 

  • Baturo W, Lagadic L (1996) Benzo[a]pyrene hydroxylase and glutathione s-transferase activities as biomarkers in Lymnaea palustris (mollusca, gastropoda) exposed to atrazine and hexachlorobenzene in freshwater mesocosms. Environ Toxicol Chem 15: 771–781.

    CAS  Google Scholar 

  • Bauer I, Weigelt S, Ernst W (1989) Biotransformation of hexachlorobenzene in the blue mussel (Mytilus edulis). Chemosphere 19: 1701–1707.

    Article  CAS  Google Scholar 

  • Bedford JW, Zabik MJ (1973) Bioactive compounds in the aquatic environment: Uptake and loss of DDT and dieldrin by freshwater mussels. Arch Environ Contam Toxicol 1: 97–111.

    Article  CAS  Google Scholar 

  • Bejarano AC, Widenfalk A, Decho AW, Chandler GT (2003) Bioavailability of the organophosphorus insecticide chlorpyrifos to the suspension-feeding bivalve, Mercenaria mercenaria, following exposure to dissolved and particulate matter. Environ Toxicol Chem 22: 2100–2105.

    Article  CAS  Google Scholar 

  • Belden JB, Lydy MJ (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19: 2266–2274.

    Article  CAS  Google Scholar 

  • Belden JB, Ownby DR, Lotufo GR, Lydy MJ (2005) Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 2 – Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere 58: 1161–1168.

    Article  CAS  Google Scholar 

  • Benezet HJ, Knowles CO (1981) Degradation of chlordimeform by algae. Chemosphere 10: 909–917.

    Article  CAS  Google Scholar 

  • Benson AA, Shibuya I (1962) Surfactant lipids. In: Physiology and Biochemistry of Algae. Lewin RA (ed) Academic Press, New York, Chapter 22, pp 371–383.

    Google Scholar 

  • Ben-Tal Y, Cleland CF (1982) Uptake and metabolism of [14C]salicylic acid in Lemna gibba G3. Plant Physiol 70: 291–296.

    Article  CAS  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33: 3354–3361.

    Article  CAS  Google Scholar 

  • Birmelin C, Escartin E, Goldfarb PS, Livingstone DR, Porte C (1998) Enzyme effects and metabolism of fenitrothion in primary cell culture of the red swamp crayfish Procambarus clarkii. Mar Environ Res 46: 375–378.

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.

    CAS  Google Scholar 

  • Böhm HH, Müller H (1976) Model studies on the accumulation of herbicides by microalgae. Naturwissenschaften 63: 296.

    Article  Google Scholar 

  • Booij K, van den Berg C (1994) Comparison of techniques for the extraction of lipids and PCBs from benthic invertebrates. Bull Environ Contam Toxicol 53: 71–76.

    Article  CAS  Google Scholar 

  • Booth GM, Yu CC, Hansen DJ (1973) Fate, metabolism, and toxicity of 3-isopropyl-1H-2,1,3- benzothiadiazin-4(3H)-1,2,2-dioxide in a model ecosystem. J Environ Qual 2: 408–411.

    Article  CAS  Google Scholar 

  • Borchert J, Karbe L, Westendorf J (1997) Uptake and metabolism of benzo[a]pyrene absorbed to sediment by the freshwater invertebrate species Chironomus riparius and Sphaerium corneum. Bull Environ Contam Toxicol 58: 158–165.

    Article  CAS  Google Scholar 

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Microalgal Biotechnology. Borowitzka MA (ed) Cambridge University Press, Cambridge, Chapter 10, pp 257–287.

    Google Scholar 

  • Boryslawskyj M, Garrood T, Stanger M, Pearson T, Woodhead DW (1988) Role of lipid/water partitioning and membrane composition in the uptake of organochlorine pesticides into a freshwater mussel. Mar Environ Res 24: 57–61.

    Article  CAS  Google Scholar 

  • Böttcher T, Schroll R (2007) The fate of isoproturon in a freshwater microcosm with Lemna minor as a model organism. Chemosphere 66: 684–689.

    Article  CAS  Google Scholar 

  • Boutet I, Tanguy A, Moraga D (2004) Molecular identification and expression of two non-P450 enzymes, monoamine oxidase A and flavin-containing monooxygenase 2 involved in phase I of xenobiotic biotransformation in the Pacific oyster, Crasspstrea gigas. Biochim Biophys Acta 1679: 29–36.

    CAS  Google Scholar 

  • Bowes GW (1972) Uptake and metabolism of 2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane (DDT) by marine phytoplankton and its effect on growth and chloroplast electron transport. Plant Physiol 49: 172–176.

    Article  CAS  Google Scholar 

  • Bowman BP, Snell TW, Cochrane BJ (1990) Isolation and purification of glutathione-S-transferases from Brachionus plicatilis and B. calyciflorus (Rotifera). Comp Biochem Physiol 95B: 619–624.

    CAS  Google Scholar 

  • Brandes D, Elston RN (1956) An electron microscopical study of the histochemical localization of alkaline phosphatase in the cell wall of Chlorella vulgaris. Nature 177: 274–275.

    Article  CAS  Google Scholar 

  • Briand J, Julistiono H, Beaune P, Flinois JP, deWaziers I, Leroux JP (1993) Presence of proteins recognized by mammalian cytochrome P450 antibodies in Euglena gracilis. Biochim Biophys Acta 1203: 199–204.

    CAS  Google Scholar 

  • Brodtmann Jr NV (1970) Studies on the assimilation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) by Crassostrea virginica Gmelin. Bull Environ Contam Toxicol 5: 455–462.

    Article  CAS  Google Scholar 

  • Brook LT, Ankley GT, Call DJ, Cook PM (1996) Gut content weight and clearance rate for three species of freshwater invertebrates. Environ Toxicol Chem 15: 223–228.

    Article  Google Scholar 

  • Bruno MG, Fannin TE, Leversee GJ (1981) The disposition of benzo[a]pyrene in the periphyton communities of two South Carolina streams: Uptake and biotransformation. Can J Bot 60: 2084–2091.

    Google Scholar 

  • Buchwalter DB, Sandahl JF, Jenkins JJ, Curtis LR (2004) Role of uptake, biotransformation, and target site sensitivity in determining the differential toxicity of chlorpyrifos to second to fourth instar Chironomus riparius (Meigen). Aquat Toxicol 66: 149–157.

    Article  CAS  Google Scholar 

  • Burgess RM, McKinney RA (1999) Importance of interstitial water, overlying water and whole sediment exposures to bioaccumulation by marine bivalves. Environ Pollut 104: 373–382.

    Article  CAS  Google Scholar 

  • Bychek EA, Gushchina IA (1999) Age-dependent changes of lipid composition in Daphnia magna. Biochemistry (Moscow) 64: 543–545.

    CAS  Google Scholar 

  • Cáceres T, Megharaj M, Naidu R (2008) Toxicity and transformation of fenamiphos and its metabolites by two microalgae Pseudikirchneriella subcapitata and Chlorococcum sp. Sci Total Environ 398: 53–59.

    Article  CAS  Google Scholar 

  • Cai X, Liu W, Jin M, Lin K (2007) Relation of doclofop-methyl toxicity and degradation in algae cultures. Environ Toxicol Chem 26: 970–975.

    Article  CAS  Google Scholar 

  • Cai X, Liu W, Sheng G (2008) Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater algae cultures. J Agric Food Chem 56: 2139–2146.

    Article  CAS  Google Scholar 

  • Canton JH, Greve PA, Slooff W, van Esch GJ (1975) Toxicity, accumulation and elimination studies of α-hexachlorocyclohexane (α-HCH) with freshwater organisms of different trophic levels. Water Res 9: 1163–1169.

    Article  CAS  Google Scholar 

  • Canton JH, van Esch GJ, Greve PA, van Hellemond ABAM (1977) Accumulation and elimination of α-hexachlorocyclohexane (α-HCH) by the marine algae Chlamydomonas and Dunaliella. Water Res 11: 111–115.

    Article  CAS  Google Scholar 

  • Caquet T, Lagadic L, Sheffield SR (2000) Mesocosms in ecotoxicology (1): Outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38.

    CAS  Google Scholar 

  • Caquet T, Thybaud E, LeBras S, Jonot O, Ramada F (1992) Fate and biological effects of lindane and deltamethrin in freshwater mesocosms. Aquat Toxicol 23: 261–278.

    Article  CAS  Google Scholar 

  • Casserly DM, Davis EM, Downs TD, Guthrie RK (1983) Sorption of organics by Selenastrum capricornutum. Water Res 17: 1591–1594.

    Article  CAS  Google Scholar 

  • Cavaletto JF, Gardner WS (1988) Seasonal dynamics of lipids in freshwater benthic invertebrates. In: Lipids in Freshwater Ecosystem. Arts MT, Wainman BC (eds) Springer, New York, Chapter 6, pp 109–131.

    Google Scholar 

  • Cerniglia CE, Freeman JP, van Baalen C (1981) Biotransformation and toxicity of aniline and aniline derivatives in cyanobacteria. Arch Microbiol 130: 272–275.

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1979) Algal oxidation of aromatic hydrocarbon: Formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88: 50–58.

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116: 495–500.

    CAS  Google Scholar 

  • Cerniglia CE, van Baalen C, Gibson DT (1980b) Oxidation of biphenyl by the cyanobacterium. Oscillatoria sp., straing JCM. Arch Microbiol 125: 203–207.

    Article  CAS  Google Scholar 

  • Cerniglia CE, van Baalen C, Gibson DT (1980c) Metabolism of naphthalene by the Oscillatoria sp., strain JCM. J Gen Microbiol 116: 485–494.

    CAS  Google Scholar 

  • Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25: 1772–1779.

    Article  CAS  Google Scholar 

  • Chapman VJ, Chapman DJ (1973) In: The Algae. Macmillan Co., Ltd., London, 2nd Ed.

    Google Scholar 

  • Chaton PF, Ravanel P, Tissut M, Meyran JC (2002) Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with Subalpine mosquito breeding sites. Ecotoxicol Environ Safety 52: 8–12.

    Article  CAS  Google Scholar 

  • Chaty S, Rodius F, Vasseur P (2004) A comparative study of the expression of CYP1A and CYP4 genes in aquatic invertebrate (freshwater mussel, Unio tumidus) and vertebrate (rainbow trout, Oncorhynchus mykiss). Aquat Toxicol 69: 81–93.

    Article  CAS  Google Scholar 

  • Chen SJ, Hsu EL, Chen YL (1982) Fate of herbicide benthiocarb (thiobencarb) in a rice paddy model ecosystem. J Pestic Sci 7: 335–340.

    CAS  Google Scholar 

  • Chessells M, Hawker DW, Connell DW (1992) Influence of solubility in lipid on bioconcentration of hydrophobic compounds. Ecotoxicol Environ Safety 23: 260–273.

    Article  CAS  Google Scholar 

  • Choi KJ, Nakhost Z, Barzana E, Karel M (1987) Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus. Food Biotechnol 1: 117–128.

    Article  CAS  Google Scholar 

  • Christensen M, Andersen O, Banta GT (2002) Metabolism of pyrene by the polychaetes Nereis diversicolor and Arenicola marina. Aquat Toxicol 58: 15–25.

    Article  CAS  Google Scholar 

  • Ciarelli S, Kater BJ, van Straalen NM (2000) Influence of bioturbation by the amphipod Corophium volutator on fluoranthene uptake in the marine polychaete Nereis Virens. Environ Toxicol Chem 19: 1575–1581.

    CAS  Google Scholar 

  • Cid Montañés JF, van Hattum B (1995) Bioconcentration of chlorpyrifos by the freshwater isopod Asellus aquaticus (L.) in outdoor experimental ditches. Environ Pollut 88: 137–146.

    Article  Google Scholar 

  • Clark AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol 92B: 419–446.

    CAS  Google Scholar 

  • Coats JR, Metcalf RL, Kapoor IP (1974) Metabolism of the methoxychlor isostere, dianisylneopentene, in mouse, insects, and a model ecosystem. Pestic Biochem Physiol 4: 201–211.

    Article  CAS  Google Scholar 

  • Conder JM, LaPoint TW, Bowen AT (2004) Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced metabolites in an aquatic oligochaete. Aquat Toxicol 69: 199–213.

    Article  CAS  Google Scholar 

  • Connell DW (1988) Bioaccumulation behavior of persistent organic chemicals with aquatic organisms. Rev Environ Contam Toxicol 102: 117–154.

    CAS  Google Scholar 

  • Connell DW, Hawker DW (1988) Use of polynomial expressions to describe the bioconcentartion of hydrophobic chemicals in fish. Ecotoxicol Environ Safety 16: 242–257.

    Article  CAS  Google Scholar 

  • Connell DW, Bowman M, Hawker DW (1988) Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. Ecotoxicol Environ Safety 16: 293–302.

    Article  CAS  Google Scholar 

  • Connor (1984) Fish/sediment concentration ratios for organic compounds. Environ Sci Technol 18: 31–35.

    Article  CAS  Google Scholar 

  • Conrad AU, Comber SD, Simkiss K (2000) New method for the assessment of contaminant uptake routes in the oligochaete Lumbriculus variegatus. Bull Environ Contam Toxicol 65: 16–21.

    Article  CAS  Google Scholar 

  • Conrad AU, Comber SD, Simkiss K (2002) Pyrene bioavailability; effect of sediment-chemical contact time on routes of uptake in an oligochaete worm. Chemosphere 49: 447–454.

    Article  CAS  Google Scholar 

  • Contardo-Jara V, Wiegand C (2008) Biotransformation and antioxidized enzymes of Lumbriculus variegatus as biomarkers of contaminated sediment exposure. Chemosphere 70: 1879–1888.

    Article  CAS  Google Scholar 

  • Copeman LA, Parrish CC (2004) Lipids classes, fatty acids, and sterols in seafood from Gilbert Bay, Southern Labrador. J Agric Food Chem 52: 4872–4881.

    Article  CAS  Google Scholar 

  • Cowan-Ellsberry CE, Dyer SD, Erhardt S, Bernhard MJ, Roe AL, Dowty ME, Weisbrod AV (2008) Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates. Chemosphere 70: 1804–1817.

    Article  CAS  Google Scholar 

  • Cowgill UM, Williams DM, Esquivel JB (1984) Effect of maternal nutrition on fat and longevity of neonates of Daphnia magna. J Crustacean Biol 4: 173–190.

    Article  CAS  Google Scholar 

  • Crosby DG, Tucker RK (1971) Accumulation of DDT by Daphnia magna. Environ Sci Technol 5: 714–716.

    Article  CAS  Google Scholar 

  • Crum SJH, Aalderink GH, Brock TCM (1998) Fate of the herbicide linuron in outdoor experimental ditches. Chemosphere 36:2175–2190.

    Article  CAS  Google Scholar 

  • Curto MJ, van Hattum B, Cid JF (1993) In situ bioaccumulation of PAH in freshwater isopods in relation to partitioning between sediments and water. Polycycl Aromat Compd 3: 1031–1038.

    CAS  Google Scholar 

  • Damásio J, Guilhermino L, Soares AMVM, Riva MC, Barata C (2007) Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Chemosphere 70: 74–82.

    Article  CAS  Google Scholar 

  • Darley WM (1977) Biochemical composition. In: The Biology of Diatoms. Werner D (ed) Botanical Monographs vol 13, Blackwell Scientific Publications, Oxford, Chapter 7, pp 198–223.

    Google Scholar 

  • Dauberschmidt C, Dietrich DR, Schlatter C (1997) Investigation on the biotransformation capacity of organophosphates in the mollusc Dreissena polymorpha P. Aquat Toxicol 37: 283–294.

    Article  CAS  Google Scholar 

  • Day JA, Saunders FM (2004) Glycosidation of chlorophenols by Lemna minor. Environ Toxicol Chem 23: 613–620.

    Article  CAS  Google Scholar 

  • Day KE (1990) Pesticides residues in freshwater and marine zooplankton: A review. Environ Pollut 67: 205–222.

    Article  CAS  Google Scholar 

  • Day KE (1991) Effects of dissolved organic carbon on accumulation and acute toxicity of fenvalerate, deltamethrin and cyhalothrin to Daphnia magna (Straus). Environ Toxicol Chem 10: 91–101.

    CAS  Google Scholar 

  • Day KE, Kaushik NK (1987) The adsorption of fenvalerate to laboratory glassware and the alfa Chlamydomonas reinhardtii, and its effect on uptake of the pesticide by Daphnia galeata mendotae. Aquat Toxicol 10: 131–142.

    Article  CAS  Google Scholar 

  • De Busk BC, Chimote SS, Rimoldi JM, Schenk D (2000) Effect of the dietary brominated phenol, lanosol, on chemical biotransformation enzymes in the gumboot chiton Cryptochiton stelleri (Middendorf, 1846). Comp Biochem Physiol 127C: 133–142.

    Google Scholar 

  • Del Vento S, Dachs J (2002) Predcition of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environ Toxicol Chem 21: 2099–2107.

    Article  CAS  Google Scholar 

  • Della Greca M, Pinto G, Pollio A, Previtera L, Temussi F (2003) Biotransformation of sinapic acid by the green algae Stichococcus bacillaris 155LTAP and Ankistrodesmus braunii C202.7a. Tetrahedron Lett 44: 2779–2780.

    Article  CAS  Google Scholar 

  • Della Greca M, Previtera L, Fiorentino A, Pinto G, Pollio A (1996) Bioconversion of 17β-hydroxy-17α- methylandrosta-1,4-dien-3-one and androsta-1,4-dien-3,17-dione in cultures of the green alga T76 Scenedesmus quadricauda. Tetrahedron 52: 13981–13990.

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42: 173–181.

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rozentsvet OA, Pechenkina EE (1990) Glycolipids, phospholipids and fatty acids of brown algae species. Phytochem 29: 3417–3421.

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rozentsvet OA, Zhuikova VS, Vasilenko RF, Kashin AG (1992) Lipid composition of freshwater macrophytes from the Volga river estuary. Phytochem 31: 3259–3261.

    Article  Google Scholar 

  • Derr SK, Zabik MJ (1972) Biologically active compounds in the aquatic environment: The uptake and distribution of [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], DDE by Chironomus tentans Fabricius (Diptera: Chironomidae). Trans Am Fish Soc 323–329.

    Google Scholar 

  • De Wolf W, de Bruijn JHM, Seinen W, Hermens JLM (1992) Influence of biotransformation on the relationship between bioconcentration factors and octanol-water partition coefficients. Environ Sci Technol 26: 1197–1201.

    Article  Google Scholar 

  • Dhanaraj PS, Kumar S, Lal R (1989) Bioconcentration and metabolism of aldrin and phorate by the blue-green algae Anabaena (ARM310) and Aulosira fertilissima (ARM68). Agric Ecosys Environ 25: 187–193.

    Article  CAS  Google Scholar 

  • Dierickx PJ (1987) Soluble glutathione transferase isoenzymes in Daphnia magna strauss and their interactions with 2,4-dichlorophenoxyacetic acid and 1,4-benzoquinone. Insect Biochem 17: 1–6.

    Article  CAS  Google Scholar 

  • Dimitrov SD, Dimitorova NC, Walker JD, Veith GD, Mekenyan OG (2002) Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size. Pure Appl Chem 74: 1823–1830.

    CAS  Google Scholar 

  • DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10: 1541–1583.

    Article  CAS  Google Scholar 

  • Donigian T, Lawrence G, Garland E, Paquin P, DiNitto R, McGrath R, Svirsky S, Campbell S, Clough J (2004) Model calibration: Modeling study of PCB contamination in the Housatonic river. Environmental remediation contract, General Electric (GE)/Housatonic river project, Pittsfield, Massachusetts, Contract No. DACW33-00-D-0006, Task Order No. 0003, DCN: GE-122304-ACMG. Volume 4, Appendix C, Attachment C-4, pp 1–546.

    Google Scholar 

  • Donkin P, Widdows J, Evans SV, Staff FJ, Yan T (1997) Effect of neurotoxic pesticides on the feeding rate of marine mussels (Mytilus edulis). Pestic Sci 49: 196–209.

    Article  CAS  Google Scholar 

  • Driscoll SK, McElroy AE (1996) Bioaccumulation and metabolism of benzo[a]pyrene in the three species of polychaete worms. Environ Toxicol Chem 15: 1401–1410.

    CAS  Google Scholar 

  • Drouillard KD, Ciborowski JJH, Lazar R, Haffner GD (1996) Estimation of the uptake of organochlorines by the mayfly Hexagenia limbata (Ephemeroptera: Ephemeridae). J Great Lakes Res 22: 26–35.

    Article  CAS  Google Scholar 

  • Duncan J, Brown N, Dunlop RW (1977) The uptake of the molluscicide, 4-chloronicotinanilide into Biomphalaria glabrata (Say) in a glowing water system. Pestic Sci 8: 345–353.

    Article  Google Scholar 

  • Dutton GJ (1965) Conjugation of phenols in molluscs: Determination of glucosyl, not glucuronyl, transfer from uridine diphosphate nucleotides. Biochem J 96: 36–37.

    Google Scholar 

  • Dutton GJ (1966) Uridine diphosphate glucose and the synthesis of phenolic glucosides by molluscs. Arch Biochem Biophys 116: 399–405.

    Article  CAS  Google Scholar 

  • Edwards R, Millburn P (1985) The metabolism and toxicity of insecticides in fish. In: Progress in Pesticide Biochemistry and Toxicology, Insecticides. Hutson DH, Roberts TR (eds) John Wiley & Sons, Ltd. New York, vol 5, chap 6, pp 249–274.

    Google Scholar 

  • EFSA (2008) Conclusions of the risk assessment on active substances. Pesticide Risk Assessment Peer Review Unit (PRAPeR), Conclusions, European Food Safety Authority, http://www.efsa.europa.eu /EFSA/ScientificPanels/PRAPER/efsa_locale-1178620753812_ Conclusions494.htm.

  • Egeler P, Römbke J, Meller M, Knacker T, Franke C, Studinger G, Nagel R (1997) Bioaccumulation of lindane and hexachlorobenzene by turbificid sludgeworms (oligochaeta) under standardized laboratory conditions. Chemosphere 35: 835–852.

    Article  CAS  Google Scholar 

  • Ellgehausen H, Guth JA, Esser HO (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotox Environ Safety 4: 134–157.

    Article  CAS  Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by fresh-water algae. Plant Sci Lett 8:213–216.

    Article  CAS  Google Scholar 

  • Elmamlouk TH, Gessner T (1978) Carbohydrate and sulfate conjugations of p-nitrophenol by hepatopancreas of Homarus Americanus. Comp Biochem Physiol 61C: 363–367.

    CAS  Google Scholar 

  • Ensley HE, Barber JT, Polito MA, Oliver AI (1994) Toxicity and metabolism of 2,4-dichlorophenol by the aquatic angiosperm Lemna gibba. Environ Toxicol Chem 13: 325–331.

    CAS  Google Scholar 

  • Ensz AP, Knapp CW, Graham DW (2003) Influence of autochthonous dissolved organic carbon and nutrient limitation on alachlor biotransformation in aerobic aquatic systems. Environ Sci Technol 37:4157–4162.

    Article  CAS  Google Scholar 

  • Ernst W (1977) Determination of the bioconcentration potential of marine organisms – A steady state approach. I. Bioconcentration data for seven chlorinated pesticides in mussels (Mytilus edulis) and their relation to solubility data. Chemosphere 6: 731–740.

    CAS  Google Scholar 

  • Ernst W (1979) Factors affecting the evaluation of chemicals in laboratory experiments using marine organisms. Ecotox Environ Safety 3: 90–98.

    Article  CAS  Google Scholar 

  • Escartin E, Porte C (1996) Bioaccumulation, metabolism, and biochemical effects of the organophosphorus pesticide fenitrothion in Procambarus clarkii. Environ Toxicol Chem 15: 915–920.

    CAS  Google Scholar 

  • Escartin E, Porte C (1997) The use of cholinesterases and carboxylesterase activities from Mytilus Galloprovincialis in pollution monitoring. Environ Toxicol Chem 16: 2090–2095.

    Article  CAS  Google Scholar 

  • Estenik JF, Collins WJ (1979) In vitro and in vivo studies of mixed-function oxidase in an aquatic insect, Chironomus riparius. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. Khan MAQ, Lech JJ, Menn JJ (eds) ACS Symp Ser 99, American Chemical Society, Washington, DC, Chapter 21, pp 349–370.

    Chapter  Google Scholar 

  • EU (2008) Plant Protection Products – New active substances – Decisions and review reports. Health & Consumer Protection Directorate-General, European Commission. http://ec.europa.eu/food/plant/protection/evaluation/new_subs_rep_en.htm.

  • Ewald G, Larsson P (1994) Partitioning of 14C-labeled 2,2,4,4-tetrachlorobiphenyl between water and fish lipids. Environ Toxicol Chem 13: 1577–1580.

    CAS  Google Scholar 

  • Fahl GM, Kreft L, Altenburger R, Faust M, Boedeker W, Grimme LH (1995) pH-Dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides. Aquat Toxicol 31: 175–187.

    Article  CAS  Google Scholar 

  • Farrington JW (1991) Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms. Environ Health Perspect 90: 75–84.

    Article  CAS  Google Scholar 

  • Ferrando MD, Sancho E, Andreu-Moliner E (1996) Accumulation of tetradifon in an algae (Nannochloris oculata) and the cladoceran, Daphnia magna. Bull Environ Contam Toxicol 57: 139–145.

    Article  CAS  Google Scholar 

  • Feurtet-Mazel A, Grollier T, Grouselle M, Ribeyre F, Boudou A (1996) Experimental study of bioaccumulation and effects of the herbicide isoproturon on freshwater rooted macrophytes. Chemosphere 32: 1499–1512.

    Article  CAS  Google Scholar 

  • Fisher SW (1985) Effects of pH upon the environmental fate of [14C]fenitrothion in an aquatic microcosm. Ecotoxicol Environ Saf 10: 53–62.

    Article  CAS  Google Scholar 

  • Fisher SW, Hwang H, Atanasoff M, Landrum PF (1999) Lethal body residues for pentachlorophenol in Zebra mussels (Dreissena polymorpha) under varying condition of temperature and pH. Ecotoxicol Environ Saf 43: 274–283.

    Article  CAS  Google Scholar 

  • Fisher SW, Lohner TW (1986) Studies on the environmental fate of carbaryl as a function of pH. Arch Environ Contam Toxicol 15: 661–667.

    Article  CAS  Google Scholar 

  • Fisher T, Craane M, Callaghan A (2003) Induction of cytochrome P-450 activity in individual Chironomus riparius Meigen larvae exposed to xenobiotics. Ecotoxicol Environ Saf 54: 1–6.

    Article  CAS  Google Scholar 

  • Fitzpatrick PJ, Sheehan D (1993) Separation of multiple forms of glutathione-S-transferase from the blue mussel, Mytilus edulis. Xenobiotica 23: 851–861.

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley HS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509.

    CAS  Google Scholar 

  • Forbes VE, Andreassen MSH, Christensen L (2001) Metabolism of the polycyclic aromatic hydrocarbon fluoranthene by the polychaete Capitata species I. Environ Toxicol Chem 20: 1012–1021.

    CAS  Google Scholar 

  • Foster GD, Crosby DG (1986) Xenobiotic metabolism of p-nitrophenol derivatives by the rice field crayfish (Procambarus clarkii). Environ Toxicol Chem 5: 1059–1070.

    CAS  Google Scholar 

  • Francis BM, Hansen LG, Fukuto TR, Lu PY, Metcalf RL (1980) Ecotoxicology of phenylphosphono- thioates. Environ Health Persp 36: 187–195.

    Article  CAS  Google Scholar 

  • Frank PA, Hodgson RH (1964) A technique for studying absorption and translocation in submerged plants. Weeds 12: 80–82.

    Article  Google Scholar 

  • Fujisawa T, Kurosawa M, Katagi T (2006) Uptake and transformation of pesticide metabolites by duckweed (Lemna gibba). J Agric Food Chem 54: 6286–6293.

    Article  CAS  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Persp 87: 245–254.

    Article  CAS  Google Scholar 

  • Funderburk Jr HH, Lawrence JM (1963) Absorption and translocation of radioactive herbicides in submersed and emersed aquatic weeds. Weed Res 3: 304–311.

    Article  Google Scholar 

  • Gabric AJ, Connell DW, Bell PF (1990) A kinetic model for bioconcentration of lipophilic compounds by oligochaetes. Water Res 24: 1225–1231.

    Article  CAS  Google Scholar 

  • Galloway TS, Millward N, Browne MA, Depledge MH (2002) Rapid assessment of organophosphorus/carbamate exposure in the bivalve, mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquat Toxicol 61: 169–180.

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000a) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48: 6114–6120.

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000b) Uptake and phytotransformation of o,p -DDT and p,p -DDT by axenically cultivated aquatic plants. J Agric Food Chem 48: 6121–6127.

    Article  CAS  Google Scholar 

  • Gardner WS, Frez WA, Cichocki EA, Panish CC (1985) Micromethod for lipids in aquatic invertebrates. Limnol Oceanogr 30: 1099–1105.

    Article  CAS  Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p,p -DDT and the enantiomers of o,p -DDT. Environ Sci Technol 34: 1663–1670.

    Article  CAS  Google Scholar 

  • Gaskell PN, Brooks AC, Maltby L (2007) Variations in the bioaccumulation of a sediment-sorbed hydrophobic compound by benthic macroinvertebrates: Patterns and mechanisms. Environ Sci Technol 41: 1783–1789.

    Article  CAS  Google Scholar 

  • Getsinger KD, Petty DG, Madsen JD, Skogerboe JG, Houtman BA, Haller WT, Fox AM (2000) Aquatic dissipation of the herbicide triclopyr in Lake Minnetonka, Minnesota. Pest Manag Sci 56: 388–400.

    Article  CAS  Google Scholar 

  • Geyer H, Politzki G, Freitag D (1984) Prediction of ecotoxicological behavior of chemicals: Relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella. Chemosphere 13: 169–284.

    Article  Google Scholar 

  • Geyer H, Sheeham P, Kotzios D, Freitag D, Korte F (1982) Prediction of ecotoxicological behaviour of chemicals: Relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 11: 1121–1134.

    Article  CAS  Google Scholar 

  • Geyer HJ, Scheunert I, Brilggemann R, Steinberg C, Korte F, Kettrup A (1991) QSAR for organic chemical bioconcentration in daphnia, algae and mussels. Sci Total Environ 109/110: 387–394.

    Article  Google Scholar 

  • Glooschenko V, Holdrinet M, Lett JN, Frank R (1979) Bioconcentration of chlordane by the green alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 21: 515–520.

    Article  CAS  Google Scholar 

  • Gobas FAPC, Mackay D (1987) Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ Toxicol Chem 6: 495–504.

    Article  CAS  Google Scholar 

  • Gobas FAPC, McNeil EJ, Lovett-Doust L, Heffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25: 924–929.

    Article  CAS  Google Scholar 

  • Gobas FAPC, Muir DCG, Mackay D (1988) Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17: 943–962.

    Article  CAS  Google Scholar 

  • Gobas FAPC, Opperhuizen A, Hutzinger O (1986) Bioconcentration of hydrophobic chemicals in fish: Relationship with membrane permeation. Environ Toxicol Chem 5: 637–646.

    Article  CAS  Google Scholar 

  • Goulding KH, Adams N (1985) The effects of pesticides on algae. Rev Environ Contam Toxicol 5: 199–253.

    CAS  Google Scholar 

  • Goulding KH, Ellis SW (1981) The interaction of DDT with two species of freshwater algae. Environ Pollut (Ser A) 25: 271–290.

    Article  CAS  Google Scholar 

  • Govers H, Ruepert C, Aiking H (1984) Quantitative structure-activity relationships for polycyclic aromatic hydrocarbons: Correlation between molecular connectivity, physico-chemical properties, bioconcentration and toxicity in Daphnia pulex. Chemosphere 13: 227–236.

    Article  CAS  Google Scholar 

  • Gowland B, Webster L, Fryer R, Davies I, Moffat C, Stagg R (2002) Uptake and effects of the cypermethrin-containing sea lice treatment Excis® in the marine mussel, Mytilus edulis. Environ Pollut 120: 805–811.

    CAS  Google Scholar 

  • Greca MD, Fiorentino A, Pinto G, Pollio A, Previtera L (1996a) Biotransformation of progesterone by the green alga Chlorella emersoni C211-8H. Phytochem 41: 1527–1529.

    Article  Google Scholar 

  • Greca MD, Pinto G, Pistillo P, Pollio A, Previtera L, Temussi F (2008) Biotransformation of ethinylestradiol by microalgae. Chemosphere 70: 2047–2053.

    Article  CAS  Google Scholar 

  • Greca MD, Pinto G, Pollio A, Previtera L, Temussi F (2003) Biotransformation of sinapic acid by the green algae Stichococcus bacillaris 155LTAP and Ankistrodesmus braunii C202.7a. Tetrahedron Lett 44: 2779–2780.

    Article  CAS  Google Scholar 

  • Greca MD, Previtera L, Fiorentino A, Pinto G, Pollio A (1996b) Bioconversion of 17β-hydroxy-17α- methylandrosta-1,4-dien-3-one and androsta-1,4-dien-3,17-dione in cultures of the green alga T76 Scenedesmus quadricauda. Tetrahedron 52: 13981–13990.

    Article  Google Scholar 

  • Gregory Jr WW, Reed JK, Priester Jr LE (1969) Accumulation of parathion and DDT by some algae and protozoa. J Protozool 16: 69–71.

    CAS  Google Scholar 

  • Guanzon Jr NG, Fukuda M, Nakahara H (1996) Accumulation of agricultural pesticides by three freshwater microalgae. Fisheries Sci 62: 690–697.

    CAS  Google Scholar 

  • Guerrero NR, Taylor MG, Davies NA, Lawrence MAM, Edwards PA, Simkiss K, Wider EA (2002) Evidence of differences in the biotransformation of organic contaminants in three species of freshwater invertebrates. Environ Pollut 117: 523–530.

    Article  Google Scholar 

  • Guisande C, Serrano L (1989) Analysis of protein, carbohydrate and lipid in rotifers. Hydrobiologia 186/187: 330–346.

    Article  Google Scholar 

  • Gutenkauf A, Düker A, Fock HP (1998) Fatae of substituted benzoate in the freshwater green algae, Chlamydomonas reinhardtii 11-32b. Biodegrad 9: 359–368.

    Article  CAS  Google Scholar 

  • Haitzer M, Höss S, Traunspurger W, Steinberg C (1998) Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms – A review. Chemosphere 37: 1335–1362.

    Article  CAS  Google Scholar 

  • Hale RC (1989) Accumulation and biotransformation of an organophosphorus pesticide in fish and bivalves. Mar Environ Res 28: 67–71.

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nyholm N, Kusk KO, Jacobson E (2000) Influence of nitrogen status on the bioconcentration of hydrophobic organic compounds to Selenastrum capricornutum. Ecotoxicol Environ Saf 45: 33–42.

    Article  Google Scholar 

  • Hamer MJ, Goggin UM, Muller K, Maund SJ (1999) Bioavailability of lambda-cthalothrin to Chironomus riparius in sediment-water and water-only systems. Aquat Ecosys Health Manag 2: 403–412.

    CAS  Google Scholar 

  • Hand LH, Kuet SF, Lane MCG, Maund SJ, Warinton JS, Hill IR (2001) Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environ Toxicol Chem 20: 1740–1745.

    CAS  Google Scholar 

  • Hänninen O, Lindstöm-Seppä P, Koivusaari U, Väisänen M, Julkunen A, Juvonen R (1984) Glucuronidation and glucosidation reactions in aquatic species in boreal regions. Biochem Soc Trans 12: 13–17.

    Google Scholar 

  • Hansen LG, Kapoor IP, Metcalf RL (1972) Biochemistry of selective toxicity and biodegradability: Comparative O-dealkylation by aquatic organisms. Comp Gen Pharmac 3: 339–344.

    Article  CAS  Google Scholar 

  • Hansen PD (1979) Experiments on the accumulation of lindane by the primary procedures Chlorella spec and Chlorella pyrenoidosa. Arch Environ Contam Toxicol 8: 721–731.

    Article  CAS  Google Scholar 

  • Hardy JT, Dauble DD, Felice LJ (1985) Aquatic fate of synfuel residuals: Bioaccumulation of aniline and phenol by the freshwater phytoplankter Scenedesmus quadricauda. Environ Toxicol Chem 4: 29–35.

    CAS  Google Scholar 

  • Harkey GA, Klaine SJ (1992) Bioconcentration of trans-chlordane by the midge, Chironomus decorus. Chemosphere 24: 1911–1919.

    Article  CAS  Google Scholar 

  • Hartley DM, Johnston JB (1983) Use of the freshwater clam Corbicula manilensis as a monitor for organochlorine pesticides. Bull Environ Contam Toxicol 31: 33–40.

    Article  CAS  Google Scholar 

  • Hawker DW, Connell DW (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol Environ Saf 11: 184–197.

    Article  CAS  Google Scholar 

  • Heisig-Gunkel G, Gunkel G (1982) Distribution of a herbicide (atrazine, s-triazine) in Daphnia pulicaria: A new approach to determination. Arch Hydrobiol Suppl 59: 359–376.

    CAS  Google Scholar 

  • Hendriks AJ, van der Linde A, Comelissen G, Sijm DTHM (2001) The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substrates related to octanol-water partition ratio and species weight. Environ Toxicol Chem 20: 1399–1420.

    Article  CAS  Google Scholar 

  • Herbes SE, Allen CP (1983) Lipid quantitation of freshwater invertebrates: Method modification for microquantitation. Can J Fish Aquat Sci 40: 1315–1317.

    CAS  Google Scholar 

  • Herbes SE, Risi GF (1978) Metabolic alteration and excretion of anthracene by Daphnia pulex. Bull Environ Contam Toxicol 19: 147–155.

    Article  CAS  Google Scholar 

  • Hernández I, Niell FX, Fernández JA (1994) Alkaline phosphatase activity in marine macrophytes: Histochemical localization in some widespread species in southern Spain. Mar Biol 120: 501–509.

    Article  Google Scholar 

  • Hinman ML, Klaine SJ (1992) Uptake and translocation of selected organic pesticides by the rooted aquatic plant Hydrilla verticillata Royle. Environ Sci Technol 26: 609–613.

    Article  CAS  Google Scholar 

  • Hirwe AS, Metcalf RL, Kapoor IP (1972) α-Trichloromethylbenzylanilines and α-trichloromethylbenzyl phenyl ethers with DDT-like insecticidal actions. J Agric Food Chem 20: 818–824.

    Article  CAS  Google Scholar 

  • Hoarau P, Gnassia-Barelli M, Romeo M, Girard JP (2001) Differential induction of glutathione S-transferases in the clam Ruditapes Decussatus exposed to organic compounds. Environ Toxicol Chem 20: 523–529.

    CAS  Google Scholar 

  • Homola E, Chang ES (1997) Distribution and regulation of esterases that hydrolyze methyl farnesoate in Homarus americanus and other crustaceans. Gen Comp Endocrinol 106: 62–72.

    Article  CAS  Google Scholar 

  • Hoskin FCG, Walker JE, Mello CM (1999) Organophosphorus acid anhydrolase in slime mold, duckweed and mung bean: A continuing search for a physiological role and a natural substrate. Chemico-Biol Interact 119/120: 399–404.

    Article  Google Scholar 

  • Huckins JN, Petty JD, England DC (1986) Distribution and impact of trifluralin, atrazine and fonofos residues in microcosms simulating a northern prairie wetland. Chemosphere 15: 563–588.

    Article  CAS  Google Scholar 

  • Huckle KR, Millburn P (1990) Metabolism, bioconcentration and toxicity of pesticides in fish. In: Progress in Pesticide Biochemistry and Toxicology. Environmental Fate of Pesticides. Hutson DH, Roberts TR (eds). John Wiley & Sons, Ltd. New York, vol 7, Chapter 8, pp 176–243.

    Google Scholar 

  • Hughes JB, Shanks J, Vanderford M, Lauvitzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and tissue cultures. Environ Sci Technol 31: 266–271.

    Article  CAS  Google Scholar 

  • Ikenaka Y, Eun H, Ishizaka M, Miyabara Y (2006) Metabolism of pyrene by aquatic crustacean, Daphnia magna. Aquat Toxicol 80: 158–165.

    Article  CAS  Google Scholar 

  • Ingersoll CG, Brunson EL, Wang N, Dwyer FJ, Ankley GT, Mount DR, Huckins J, Petty J, Landrum PF (2003) Uptake and depuration of nonionic organic contaminants from sediment by the oligochaete, Lumbriculus variegatus. Environ Toxicol Chem 23: 872–885.

    Google Scholar 

  • Isensee AR (1976) Variability of aquatic model ecosystem-derived data. Intern J Environ Stud 10: 35–41.

    Article  CAS  Google Scholar 

  • Isensee AR, Durbey PS (1983) Distribution of pendimethalin in an aquatic microecosystem. Bull Environ Contam Toxicol 30: 239–244.

    Article  CAS  Google Scholar 

  • Isensee AR, Holden ER, Woolson EA, Jones GE (1976) Soil persistence and aquatic bioaccumulation potential of hexachlorobenzene (HCB). J Agric Food Chem 24: 1210–1214.

    Article  CAS  Google Scholar 

  • Isensee AR, Jones GE, McCann JA, Pitcher FG (1979a) Toxicity and fate of nine toxaphene fractions in an aquatic model ecosystem. J Agric Food Chem 27: 1041–1046.

    Article  CAS  Google Scholar 

  • Isensee AR, Kearney PC, Jones GE (1979b) Modeling aquatic ecosystems for metabolic studies. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. Khan MAQ, Lech JJ, Menn JJ (eds) ACS Symp Ser 99, American Chemical Society, Washington, DC, Chapter 13, pp 195–216.

    Chapter  Google Scholar 

  • James MO (1982) Disposition and taurine conjugation of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, bis(4-chlorophenyl)acetic acid and phenylacetic acid in the spiny lobster, Panulirus argus. Drug Metab Disp 10: 516–522.

    CAS  Google Scholar 

  • James MO (1986) Xenobiotic conjugation in fish and other aquatic species. In: Xenobiotic Conjugation Chemistry. Paulson GD, Caldwell J, Hutson DH, Menn JJ (eds), ACS Symp Ser 299, American Chemical Society, Washington, DC, Chapter 2, pp 29–47.

    Chapter  Google Scholar 

  • James MO (1987) Conjugation of organic pollutants in aquatic species. Environ Health Perspect 71: 97–103.

    Article  CAS  Google Scholar 

  • James MO (1989) Cytochrome P450 monooxygenases in crustaceans. Xenobiotica 19: 1063–1076.

    Article  CAS  Google Scholar 

  • James MO (1994) Pesticide metabolism in aquatic organisms. Chem Plant Prot 9: 153–189.

    CAS  Google Scholar 

  • James MO, Boyle SM (1998) Cytochrome P450 in crustacean. Comp Biochem Physiol 121C: 157–172.

    CAS  Google Scholar 

  • James MO, Pritchard JB (1990) Pesticide metabolism in aquatic organisms. In: Pesticide Chemistry, Advances in International Research, Development, and Legislation. Proc 7th Intl Cong Pest Chem (IUPAC), Hamburg, Frechse VCH (ed), Weinheim, pp 277–286.

    Google Scholar 

  • Janer G, LeBlanc GA, Porte C (2005a) Androgen metabolism in invertebrates and its modulation by xenoandrogens. Ann NY Acad Sci 1040: 354–356.

    Article  CAS  Google Scholar 

  • Janer G, Mesia-Vela S, Kauffman FC, Porte C (2005b) Sulfatase activity in the oyster Crassostrea virginica: Its potential interference with sulfptransferase determination. Aquat Toxicol 74: 92–95.

    Article  CAS  Google Scholar 

  • Jessiman BJ, Qadri SU (1983) Bioaccumulation kinetics of the organochlorine pesticide mirex in amphipods. Ecotoxicol Environ Saf 7: 295–305.

    Article  CAS  Google Scholar 

  • Jingi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75: 273–278.

    Article  Google Scholar 

  • Johnson BT, Saunders CR, Sanders HO, Campbell RS (1971) Biological magnification and degradation of DDT and aldrin by freshwater invertebrates. J Fish Res Bd Canada 28: 705–709.

    CAS  Google Scholar 

  • Johnston JJ, Corbett MD (1986a) The effects of salinity and temperature on the in vitro metabolism of the organophosphorus insecticide fenitrothion by the blue crab, Callinectes sapidus. Pestic Biochem Physiol 26: 193–201.

    Article  CAS  Google Scholar 

  • Johnston JJ, Corbett MD (1986b) The uptake and in vivo metabolism of the organophosphate insecticide fenitrothion by the blue crab, Callinectes sapidus. Toxicol Appl Pharmacol 85: 181–188.

    Article  CAS  Google Scholar 

  • Jonsson CM, Paraiba LC, Mendoza MT, Sabater C, Carrasco JM (2001) Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila. Chemosphere 43: 321–325.

    Article  CAS  Google Scholar 

  • Julin AM, Sanders HO (1977) Toxicity and accumulation of the insecticide imidan in freshwater invertebrates and fishes. Trans Am Fish Soc 106: 386–392.

    Article  Google Scholar 

  • Kale SP, Carvalho FP, Raghu K, Sherkhane PD, Pandit GG, Mohan Rao A, Mukherjee PK, Murthy NBK (1999b) Studies on degradation of 14C-chlorpyrifos in the marine environment. Chemosphere 39: 969–976.

    Article  CAS  Google Scholar 

  • Kale SP, Murthy NBK, Raghu K, Sherkhane PD, Carvalho FP (1999a) Studies on degradation of 14C-DDT in the marine environment. Chemosphere 39: 959–968.

    Article  CAS  Google Scholar 

  • Kale SP, Sherkhane PD, Murthy NBK (2002) Uptake of 14C-chlorpyrifos by clams. Environ Technol 23: 1309–1311.

    Article  CAS  Google Scholar 

  • Kanazawa J (1978) Bioconcentration ratio of diazinon by freshwater fish and snail. Bull Environ Contam Toxicol 20: 613–617.

    Article  CAS  Google Scholar 

  • Kanazawa J, Isensee AR, Kearney PC (1975) Distribution of carbaryl and 3,5-xylyl methylcarbamate in an aquatic model ecosystem. J Agric Food Chem 23: 760–763.

    Article  CAS  Google Scholar 

  • Kapoor IP, Metcalf RL, Hirwe AS, Coats JR, Khalsa MS (1973) Structure activity correlations of biodegradability of DDT analogs. J Agric Food Chem 21: 310–315.

    Article  CAS  Google Scholar 

  • Kapoor IP, Metcalf RL, Hirwe AS, Lu PY, Coats JR, Nystrom RE (1972) Comparative metabolism of DDT, methylchlor, and ethoxychlor in mouse, insects, and in a model ecosystem. J Agric Food Chem 20: 1–6.

    Article  CAS  Google Scholar 

  • Kapoor IP, Metcalf RL, Nystrom RF, Sangha GK (1970) Comparative metabolism of methoxychlor, methiochlor and DDT in mouse, insects, and in a model ecosystem. J Agric Food Chem 18: 1145–1152.

    Article  CAS  Google Scholar 

  • Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10: 833–846.

    Article  CAS  Google Scholar 

  • Kashiwada S, Mochida K, Ozoe Y, Nakamura T (1995a) Malathion – tolerance and degrading abilities of brakish zooplankton, Sinocalanus tenellus and Oithona davisae. J Pestic Sci 20: 161–164.

    CAS  Google Scholar 

  • Kashiwada S, Mochida K, Ozoe Y, Nakamura T (1995b) Contribution of zooplankton to disappearance of organophosphorus insecticides in environmental water. J Pestic Sci 20: 503–512.

    CAS  Google Scholar 

  • Kashiwada S, Mochida K, Ozoe Y, Nakamura T (1998) Metabolism of fenitrothion in several brackish and marine zooplankton species. J Pestic Sci 23: 308–311.

    CAS  Google Scholar 

  • Katagi (2006) Behavior of pesticides in water-sediment systems. Rev Environ Contam Toxicol 187: 133–251.

    Article  CAS  Google Scholar 

  • Katagi T, Miyakado M, Takayama C, Tanaka S (1995) Theoretical estimation of octanol-water partition coefficient for organophosphorus pesticides. In: Classical and Three-Dimensional QSAR in Agrochemistry. Hansch C, Fujita T (eds) ACS Symp Ser 606, American Chemical Society, Washington, DC, Chapter 4, pp 48–61.

    Chapter  Google Scholar 

  • Kawatski JA, Bittner MA (1975) Uptake, elimination and biotransformation of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) by larvae of the aquatic midge Chironomus tentans. Toxicology 4: 183–194.

    Article  CAS  Google Scholar 

  • Kawatski JA, Schmulbach JC (1970) Chlamydotheca arcuata: Autoradiographic localization of 14C-aldrin and 14C-dieldrin. Trans Am Microsc Soc 89: 424–427.

    Article  CAS  Google Scholar 

  • Kawatski JA, Schmulbach JC (1971) Epoxidation of aldrin by a freshwater ostracod. J Econ Entmol 64: 316–317.

    CAS  Google Scholar 

  • Kawatski JA, Schmulbach JC (1972) Uptake and elimination of 14C-aldrin and 14C-dieldrin by the ostracod Chlamydotheca arcuata (Sars). Int J Environ Anal Chem 1: 283–291.

    Article  CAS  Google Scholar 

  • Kazano H, Asakawa M, Tomizawa C (1976) Balance study of 14C derived from N-CH3-(14C)-labeled 3,5-xylyl methylcarbamate insecticide (XMC) applied on a model ecosystem. Appl Ent Zool 11: 263–266.

    CAS  Google Scholar 

  • Kearney PC, Isensee AR, Kontson A (1977a) Distribution and degradation of dinitroaniline herbicides in an aquatic ecosystem. Pestic Biochem Physiol 7: 242–248.

    Article  CAS  Google Scholar 

  • Kearney PC, Oliver JE, Helling CS, Isensee AR, Kontson A (1977b) Distribution, movement, persistence and metabolism of N-nitrosoatrazine in soils and a model aquatic ecosystem. J Agric Food Chem 25: 1177–1181.

    Article  CAS  Google Scholar 

  • Keil JE, Priester LE (1969) DDT uptake and metabolism by a marine diatom. Bull Environ Contam Toxicol 4: 169–173.

    Article  CAS  Google Scholar 

  • Kenney-Wallace G, Blackman GE (1972) The uptake of growth substances. XIV. Patterns of uptake by lemna minor of phenoxyacetic and benzoic acids following progressive chlorination. J Exp Botany 23: 114–127.

    Article  CAS  Google Scholar 

  • Kent RA, Currie D (1995) Predicting algal sensitivity to a pesticide stress. Environ Toxicol Chem 14: 983–991.

    Article  CAS  Google Scholar 

  • Khalil Z, Mostafa IY (1986) Interaction of pesticides with freshwater algae. I. Effect of methomyl and its possible degradation by Phormidium fragile. J Environ Sci Health B21: 289–301.

    CAS  Google Scholar 

  • Khalil Z, Mostafa IY (1987) Interaction of pesticides with freshwater algae. II. Degradation of 14C-labelled carbofuran by Anabaena oryzae and Phormidium fragile. Isotope Rad Res 19: 35–41.

    CAS  Google Scholar 

  • Khan HM, Neudoff S, Khan MAQ (1975) Absorption and elimination of photodieldrin by daphnia and goldfish. Bull Environ Contam Toxicol 13: 582–587.

    Article  CAS  Google Scholar 

  • Khan MAQ, Kamel A, Wolin RJ, Runnels J (1972) In vivo and in vitro epoxidation of aldrin by aquatic food chain organisms. Bull Environ Contam Toxicol 8: 219–228.

    Article  CAS  Google Scholar 

  • Kikuchi R, Yasutaniya T, Takimoto Y, Yamada H, Miyamoto J (1984) Accumulation and metabolism of fenitrothion in three species of algae. J Pestic Sci 9: 331–337.

    CAS  Google Scholar 

  • King I, Childs MT, Dorsett C, Ostrander JG, Monsen ER (1990) Shellfish: Proximate composition, minerals, fatty acids and sterols. J Am Diet Assoc 90: 677–685.

    CAS  Google Scholar 

  • King PH, Yeh HH, Warren PS, Randall CW (1969) Distribution of pesticides in surface waters. J Am Water Works Assoc 61: 483–486.

    CAS  Google Scholar 

  • Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13: 493–501.

    Article  CAS  Google Scholar 

  • Klosterhaus SL, DiPinto LM, Chandler GT (2003) A comparative assessment of azinphos methyl bioaccumulation and toxicity in two estuarine meiobenthic harpacticoid copepods. Environ Toxicol Chem 22: 2960–2968.

    Article  CAS  Google Scholar 

  • Kneifel H, Elmendorff K, Hegewald E, Soeder CJ (1997) Biotransformation of 1-naphthalenesulfonic acid by the green alga Scenedesmus obliquus. Arch Microbiol 167: 32–37.

    Article  CAS  Google Scholar 

  • Knezovich JP, Crosby DG (1985) Fate and metabolism of o-toluidine in the marine bivalve molluscs Mytilus edulis and Crassostrea gigas. Environ Toxicol Chem 4: 435–446.

    CAS  Google Scholar 

  • Knezovich JP, Harrison FL (1988) The bioavailability of sediment-sorbed chlorobenzenes to larvae of the midge, Chironomus decorus. Ecotoxicol Environ Saf 15: 226–241.

    Article  CAS  Google Scholar 

  • Knuth ML, Heinis LJ (1995) Distribution and persistence of diflubenzuron within littoral enclosure mesocosms. J Agric Food Chem 43:1087–1097.

    Article  CAS  Google Scholar 

  • Kobayashi K, Akitake H, Tomiyama T (1970a) Studies on the metabolism of pentacjlorophenate, a herbicide, in aquatic organisms – II. Biochemical change of PCP in sea water by detoxication mechanism of Tapes philippinarum. Bull Jpn Soc Sci Fish 36: 96–102.

    CAS  Google Scholar 

  • Kobayashi K, Akitake H, Tomiyama T (1970b) Studies on the metabolism of pentachlorophenate, a herbicide, in aquatic organisms – III. Isolation and identification of a conjugated PCP yielded by a shell-fish, Tapes philippinarum. Bull Jpn Soc Sci Fish 36: 103–108.

    CAS  Google Scholar 

  • Kobayashi K, Nakamura Y, Imada N (1985a) Metabolism of an organophosphorus insecticide, fenitrothion, in tiger shrimp Penaeus japonicus. Bull Jpn Soc Sci Fish 51: 599–603.

    CAS  Google Scholar 

  • Kobayashi K, Nakamura Y, Imada N (1985b) Formation of the sulfate and glucoside metabolites of fenitrothion in tiger shrimp Penaeus japonicus. Bull Jpn Soc Sci Fish 51: 2013–2017.

    CAS  Google Scholar 

  • Kobayashi K, Oshima Y, Hamada S, Taguchi C (1987) Induction of phenol-sulfate conjugating activity by exposure to phenols and duration of its induced activity in short-necked clam. Bull Jpn Soc Sci Fish 53: 2073–2076.

    CAS  Google Scholar 

  • Kobayashi K, Rompas RM, Oshima Y, Imada N (1990) A comparative study on the toxicity, absorption and depuration of fenitrothion and its oxon in Japanese tiger shrimp. Bull Jpn Soc Sci Fish 56: 923–928.

    CAS  Google Scholar 

  • Koelmans AA, Sánchez Jiménez C (1994) Temperature dependency of chlorobenzene bioaccumulation in phytoplankton. Chemosphere 28: 2041–2048.

    Article  CAS  Google Scholar 

  • Kominami S (1993) Substrate binding and the reduction of cytochrome P-450. In: Cytochrome P-450. 2nd Ed. Omura T, Ishimura Y, Fujii-Kuriyama Y (eds) VCH Publishers Inc., New York, pp 64–80.

    Google Scholar 

  • Kooper IP, Metcalf RL, Hirwe AS, Coats JR, Khalsa MS (1973) Structure activity correlations of biodegradability of DDT analogs. J Agric Food Chem 21: 310–315.

    Article  Google Scholar 

  • Kraaij R, Maayer P, Busser FJM, Bolscher MVH, Seinen W, Tolls J (2003) Measured pore-water concentration make equilibrium partitioning work – A data analysis. Environ Sci Technol 37: 268–274.

    Article  CAS  Google Scholar 

  • Krieger RI, Gee SJ, Lim LO, Ross JH, Wilson A (1979) Disposition of toxic substances in mussels (Mytilus califorianus): Preliminary metabolic and histologic studies. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. Khan MAQ, Lech JJ, Menn JJ (eds) ACS Symp Ser 99, American Chemical Society, Washington, DC, Chapter 16, pp 259–277.

    Google Scholar 

  • Krieger RI, Lee PW (1976) Properties of the aldrin epoxidase system in gut and fat body of a caddisfly larva. J Eco Entmol 66: 1–6.

    Google Scholar 

  • Kukkonen J, Oikari A (1988) Sulphate conjugation is the main route of pentachlorophenol metabolism in Daphnia magna. Comp Biochem Physiol 91C: 465–468.

    CAS  Google Scholar 

  • Kukkonen J, Oikari A (1991) Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material. Water Res 25: 455–463.

    Article  CAS  Google Scholar 

  • Kumar S, Lal R (1988) Uptake of dieldrin, dimethoate and permethrin by cyanobacteria, Anabaena sp. and Aulosira fertilissima. Environ Pollut 54: 55–61.

    CAS  Google Scholar 

  • Kurelec (1985) Exclusive activation of aromatic amines in the marine mussel Mytilus edulis by FAD-containing monooxygenase. Biochem Biophys Res Commun 127: 773–778.

    Article  CAS  Google Scholar 

  • Kuritz T, Bocanera LV, Rivera NS (1997) Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. J Bacteriol 179: 3368–3370.

    CAS  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61: 234–238.

    CAS  Google Scholar 

  • Küsel AC, Sianoudis J, Leibfritz D, Grimme LH, Mayer A (1990) The dependence of the cytoplasmic pH in aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris on the pH of the medium as determined by 31P in vivo NMR spectroscopy. Arch Microbiol 153: 254–258.

    Article  Google Scholar 

  • Kusk KO (1996) Bioavailability and effect of pirimicarb on Daphnia magna in a laboratory freshwater/sediment system. Arch Environ Contam Toxicol 31: 252–255.

    Article  CAS  Google Scholar 

  • Lacaze JPCL, Stobo LA, Turrell EA, Quilliam MA (2007) Solid-phase extraction and liquid chromatography – mass spectroscopy for the determination of free fatty acids in shellfish. J Chromatogr A 1145: 51–57.

    Article  CAS  Google Scholar 

  • Lal R, Saxena DM (1982) Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbial Rev 46: 95–127.

    CAS  Google Scholar 

  • Lal S, Lal R, Saxena DM (1987) Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the blue-green algae Anabaena sp. and Aulosira fertilissima. Environ Pollut 46: 187–196.

    Article  CAS  Google Scholar 

  • Lalah JO, Behechti A, Severin GF, Lenoir D, Günther K, Kettrup A, Schramm KW (2003) The bioaccumulation and fate of a branched 14C-nonylphenol isomer in Lymnaea stagnalis L. Environ Toxicol Chem 22: 1428–1436.

    CAS  Google Scholar 

  • Landrum PF (1988) Toxicokinetics of organic xenobiotics in the amphipod, Pontoporeia hoyi: Role of physiological and environmental variables. Aquat Toxicol 12: 245–271.

    Article  CAS  Google Scholar 

  • Landrum PF (1989) Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ Sci Technol 23: 588–595.

    Article  CAS  Google Scholar 

  • Landrum PF, Crosby DG (1981) Comparison of the disposition of several nitrogen-containing compounds in the sea urchin and other marine invertebrates. Xenobiotica 11: 351–361.

    Article  CAS  Google Scholar 

  • Landrum PF, Dupuis WS (1990) Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontporeia hoyi and Mysis relicta. In: Aquatic Toxicology and Risk Assessment: Thirteenth Volume. Landis WG, van der Schalie WH (eds) STP 1096, ASTM, Philadelphia, pp 278–289.

    Chapter  Google Scholar 

  • Landrum PF, Fisher SW (1998) Influence of lipids on the bioaccumulation and trophic transfer of organic contaminants in aquatic organisms. In: Lipids in Freshwater Ecosystems. Arts MT, Wainman BC (eds) Springer, New York, Chapter 9, pp 203–234.

    Google Scholar 

  • Landrum PF, Scavia D (1983) Influence of sediment on anthracene uptake, depuration and biotransformation by the smphipod Hyalella azteca. Can J Fish Aquat Sci 40: 298–305.

    CAS  Google Scholar 

  • Lavado R, Janer G, Porte C (2006) Steroid levels and steroid metabolism in the mussel Mytilus edulis: The modulating effect of dispersed crude oil and alkylphenols. Aquat Toxicol 78S: S65–S72.

    Article  CAS  Google Scholar 

  • LeBlanc GA, Cochrane BJ (1985) Modulation of substrate-specific glutathione S-transferase activity in Daphnia magna with concomitant effects on toxicity tolerance. Comp Biochem Physiol 82C: 37–42.

    CAS  Google Scholar 

  • LeBlanc GA, Cochrane BJ (1987) Identification of multiple glutathione-S-transferases from Daphnia magna. Comp Biochem Physiol 88B: 39–45.

    CAS  Google Scholar 

  • Lech JJ, Vodicnik MJ (1985) Biotransformation. In: Fundamentals of aquatic toxicology. Rand GM, Petrocelli SR (eds) Hemisphere Publishing Co., New York, Chapter 18, pp 520–557.

    Google Scholar 

  • Lee AH, Lu PY, Metcalf RL, Hsu EL (1976) The environmental fate of three dichlorophenyl nitrophenyl ether herbicides in a rice paddy model ecosystem. J Environ Qual 5: 482–486.

    Article  Google Scholar 

  • Lee RF (1981) Mixed function oxygenases (MFO) in marine invertebrates. Biol Lett 2: 87–105.

    CAS  Google Scholar 

  • Lee RF (1998) Annelid cytochrome P450. Comp Biochem Physiol 121C: 173–179.

    CAS  Google Scholar 

  • Lee RF, Valkirs AO, Seligman PF (1989) Importance of microalgae in the biodegradation of tributyltin in estuarine waters. Environ Sci Technol 23: 1515–1518.

    Article  CAS  Google Scholar 

  • Lee SE, Kim JS, Kennedy IR, Park JW, Kwon GS, Koh SC, Kim JE (2003) Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J Agric Food Chem 51: 1336–1340.

    Article  CAS  Google Scholar 

  • Legierse KCHM, Sijm DTHM, van Leeuwen CJ, Seinen W, Hermens JLM (1998) Bioconcentration kinetics of chlorobenzenes and the organophosphorus pesticide chlorthion in the pond snail Lymnaea stagnalis – a comparison with the guppy Poecilia veticulata. Aquat Toxicol 41: 301–323.

    Article  CAS  Google Scholar 

  • Leppänen MT, Kukkonen JVK (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegates, Müller). Environ Sci Technol 32: 1503–1508.

    Article  Google Scholar 

  • Leppänen MT, Kukkonen JVK (2000) Fate of sediment-associated pyrene and benzo[a]pyrene in the freshwater oligochaete Lumbriculus variegatus (Müller). Aquat Toxicol 49: 199–212.

    Article  Google Scholar 

  • Leppänen MT, Kukkonen JVK (2006) Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Environ Pollut 140: 150–163.

    Article  CAS  Google Scholar 

  • Leppänen MT, Landrum PF, Kukkonen JVK, Greenberg MS, Burton GA, Robinson SD, Gossiaux DC (2003) Investigating the role of desorption on the bioavailability of sediment-associated 3,4,3,4-tetrachlorobiphenyl in benthic invertebrates. Environ Toxicol Chem 22: 2861–2871.

    Article  Google Scholar 

  • Leversee GJ, Giesy JP, Landrum PF, Gerould S, Bowling JW, Fannin TE, Haddock JD, Bartell SM (1982) Kinetics and biotransformation of benzo[a]pyrene in Chironomus riparius. Arch Environ Contam Toxicol 11: 25–31.

    Article  CAS  Google Scholar 

  • Lewin RA (1974) Biochemical taxonomy. In: Algal Physiology and Biochemistry. Stewart WDP (ed) Botanical Monographs vol 10, Blackwell Scientific Publications, Oxford, Chapter 1, pp 1–39.

  • Li CLJ, James MO (1993) Glucose and sulfate conjugations of phenol, β-naphthol and 3-hydroxybenzo[a]pyrene by the American lobster (Homarus americanus). Aquat Toxicol 26: 57–72.

    Article  CAS  Google Scholar 

  • Lin H, Jiang J, Xue CH, Zhang B, Xu JC (2003) Seasonal changes in phospholipids of mussels (Mytilus edulis Linne). J Sci Food Agric 83: 133–135.

    Article  CAS  Google Scholar 

  • Lindquist B, Warshawsky D (1985a) Identification of the 11,12-dihydro-11,12-dihydroxybenzo[a]pyrene as a major metabolite produced by the green algae, Selenastrum capricornutum. Biochem Biophys Res Commun 130: 71–75.

    Article  CAS  Google Scholar 

  • Lindquist B, Warshawsky D (1985b) Stereospecificity in algal oxidation of the carcinogen benzo[a]pyrene. Experientia 41: 767–769.

    Article  CAS  Google Scholar 

  • Lindström-Seppä P, Koivusaari U, Hänninen O (1983) Metabolism of foreign compounds in freshwater crayfish (Astacus astacus L) tissues. Aquat Toxicol 3: 35–46.

    Article  Google Scholar 

  • Liu ZT, Kong ZM, Zhou F, Wang LS (1996) Bioconcentration and toxicity effect on lipid content of aquatic organisms. Bull Environ Contam Toxicol 56: 135–142.

    Article  CAS  Google Scholar 

  • Livingstone DR, Kirchin MA, Wiseman A (1989) Cytochrome P-450 and oxidative metabolism in molluscs. Xenobiotica 19: 1041–1062.

    Article  CAS  Google Scholar 

  • Lockhart WL, Billeck BN, de March GE, Muir DCG (1983) Uptake and toxicity of organic compounds: Studies with an aquatic macrophyte (Lemna minor). ASTM Spec Tech Publ 802: 460–468.

    CAS  Google Scholar 

  • Lockhart WL, Metner DA, Billeck BN, Rawn GP, Muir DCG (1984) Bioaccumulation of some forestry pesticides in fish and aquatic plants. In: Chemical and Biological Controls in Forestry, Garner WY, Harvey Jr J (eds), ACS Symposium Ser 238, American Chemical Society, Washington, DC, pp 297–315.

    Chapter  Google Scholar 

  • Lohner TW, Fisher SW (1990) Effects of pH and temperature on the acute toxicity and uptake of carbaryl in the midge, Chironomus riparius. Aquat Toxicol 16: 335–354.

    Article  CAS  Google Scholar 

  • Londoño DK, Siegfried BD, Lydy MJ (2004) Atrazine induction of a family 4 cytochrome P450 gene in Chironomus tentans (Diptera: Chironomidae). Chemosphere 56: 701–706.

    Article  CAS  Google Scholar 

  • Looser PW, Fent K, Berg M, Goudsmit GH, Schwarzenbach RP (2000) Uptake and elimination of triorganotin compounds by larval midge Chironomus riparius in the absence and presence of Aldrich humic acid. Environ Sci Technol 34: 5165–5171.

    Article  CAS  Google Scholar 

  • Lotufo GR, Farrar JD, Duke BM, Bridges TS (2001b) DDT toxicity and critical body residue in the amphipod Leptocherirus plumulosus in exposures to spiked sediment. Arch Environ Contam Toxicol 41: 142–150.

    Article  CAS  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML (2001a) Toxicity and bioaccumulation of DDT in freshwater amphipods in exposures to spiked sediments. Environ Toxicol Chem 20: 810–825.

    Article  CAS  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML, Tique EA, Herche LR (2000) Comparative toxicity and toxicokinetics of DDT and its major metabolites in freshwater amphipods. Environ Toxicol Chem 19: 368–379.

    Article  CAS  Google Scholar 

  • Lovell CR, Eriksen NT, Lewitus AJ (2002) Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Mar Ecol Prog Ser 229: 11–18.

    Article  CAS  Google Scholar 

  • Lu PY, Metcalf RL (1975) Environmental fate and biodegradability of benzene derivatives as studies in a model aquatic ecosystem. Environ Health Perspect 10: 269–284.

    Article  CAS  Google Scholar 

  • Lu PY, Metcalf RL, Hirwe AS, Williams JW (1975) Evaluation of environmental distribution and fate of hexachlorocyclopentadiene, chlordane, heptachlor, and heptachlor epoxide in a laboratory model ecosystem. J Agric Food Chem 23: 967–973.

    Article  CAS  Google Scholar 

  • Lu PY, Metcalf RL, Plummer N, Mandel D (1977) The environmental fate of three carcinogens: Benzo[a]pyrene, benzidine and vinyl chloride evaluated in laboratory model ecosystems. Arch Environ Contam Toxicol 6: 129–142.

    Article  CAS  Google Scholar 

  • Lydy MJ, Hayton WL, Staubus AE, Fisher SW (1994) Bioconcentration of 5,5,6-trichlorobiphenyl and pentachlorophenol in the midge, Chironomus riparius, as measured by a pharmacokinetic model. Arch Environ Contam Toxicol 26: 251–256.

    Article  CAS  Google Scholar 

  • Lydy MJ, Lasater JL, Landrum PF (2000) Toxicokinetics of DDE and 2-chlorobiphenyl in Chironomus tentans. Arch Environ Contam Toxicol 38: 163–168.

    Article  CAS  Google Scholar 

  • Lydy MJ, Lohner TW, Fisher SW (1990) Influence of pH, temperature and sediment type on the toxicity, accumulation and degradation of parathion in aquatic systems. Aquat Toxicol 17: 27–44.

    Article  CAS  Google Scholar 

  • Lynch TR, Johnson HE, Adams WJ (1982) The fate of atrazine and a hexachlorobiphenyl isomer in naturally-derived model stream ecosystems. Environ Toxicol Chem 1: 179–192.

    Article  CAS  Google Scholar 

  • Lyytikäinen M, Pehkonen S, Akkanen J, Leppänen M, Kukkonen VK (2007) Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during sediment tests with oligochaetes (Lumbriculus variegatus). Environ Toxicol Chem 26: 2660–2666.

    Article  Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16: 274–278.

    Article  CAS  Google Scholar 

  • Mackay D, Hughes AI (1984) Three-parameter equation describing the uptake of organic compounds by fish. Environ Sci Technol 18: 439–444.

    Article  CAS  Google Scholar 

  • Mackiewicz M, Deubert KH, Gunner HB, Zuckerman BM (1969) Study of parathion biodegradation using gnotobiotic techniques. J Agric Food Chem 17: 129–130.

    Article  CAS  Google Scholar 

  • Mäenpää KA, Sormunen AJ, Kukkonen JVK (2003) Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin and bentazone) in Lumbriculus variegatus (Oligochaete) and Chironomus riparius (Insecta). Ecotoxicol Environ Saf 56: 398–410.

    Article  CAS  Google Scholar 

  • Mäenpää KA, Sorsa K, Lyytikäinen M, Leppänen MT, Kukkonen JVK (2008) Bioaccumulation, sublethal toxicity, and biotransformation of sediment-associated pentachlorophenol in Lumbriculus variegatus (oligochaeta). Ecotoxicol Environ Saf 69: 121–129.

    Article  CAS  Google Scholar 

  • Maguire RJ, Wong PTS, Rhamey JS (1984) Accumulation and metabolism of tri-n-butyltin cation by a green algae, Ankistrodesmus falcatus. Can J Fish Aquat Sci 41: 537–540.

    Article  CAS  Google Scholar 

  • Mailhot H (1987) Prediction of algal bioaccumulation and uptake rate of nine organic compounds by ten physicochemical properties. Environ Sci Technol 21: 1009–1013.

    Article  CAS  Google Scholar 

  • Mäkelä P, Oikari OJ (1990) Uptake and body distribution of chlorinated phenolics in the freshwater mussel, Anodonta anatine L. Ecotoxicol Environ Saf 20: 354–362.

    Article  Google Scholar 

  • Maki AW, Johnson HE (1977) Kinetics of lampricide (TFM, 3-trifluoromethyl-4-nitrophenol) residues in model stream communities. J Fish Res Board Can 34: 276–281.

    CAS  Google Scholar 

  • Manthey M, Faust M, Smolk S, Grimme LH (1993) Herbicide bioconcentration in algae: Studies on lipophilicity–activity relationships (LSAR) with Chlorella fusca. Sci Total Environ (Suppl.) 1: 453–459.

    Article  Google Scholar 

  • Marguis LY, Comes RD, Yang CY (1981) Absorption and translocation of fluridone and glyphosate in submerged vascular plants. Weed Sci 29: 229–236.

    Google Scholar 

  • Markwell RD, Connell DW, Gabric AJ (1989) Bioaccumulation of lipophilic compounds from sediments by oligochaetes. Water Res 23: 1443–1450.

    Article  CAS  Google Scholar 

  • Mason JW, Rowe DR (1976) The accumulation and loss of dieldrin and endrin in the eastern oyster. Arch Environ Contam Toxicol 4: 349–360.

    Article  CAS  Google Scholar 

  • Mathur R, Saxena DM (1986) Effect of hexachlorohexane (HCH) isomers on growth of and their accumulation in the blue-green alga, Anabaena sp. (ARM 310). Environ Biol 7: 239–251.

    CAS  Google Scholar 

  • Matsumura F (1977) Absorption, accumulation, and elimination of pesticides by aquatic organisms. Environ Sci Res 10: 77–105.

    CAS  Google Scholar 

  • Matsumura F, Esaac EG (1979) Degradation of pesticides by algae and aquatic microorganisms. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. Khan MAQ, Lech JJ, Menn JJ (eds) ACS Symp Ser 99, American Chemical Society, Washington, DC, Chapter 22, pp 371–387.

    Google Scholar 

  • Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21: 9–15.

    Article  CAS  Google Scholar 

  • Mayer Jr FL, Sanders HO (1973) Toxicology of phthalic acid esters in aquatic organisms. Environ Health Persp 3: 153–157.

    Article  Google Scholar 

  • McCarthy JF (1983) Role of particulate organic matter in decreasing accumulation of polynuclear aromatic hydrocarbons by Daphnia magna. Arch Environ Contam Toxicol 12: 559–568.

    Article  CAS  Google Scholar 

  • McElroy AE (1990) Polycyclic aromatic hydrocarbon metabolism in the polychaete Nereis virens. Aquat Toxicol 18: 35–50.

    Article  CAS  Google Scholar 

  • McLeese DW, Sergeant DB, Metcalf CD, Zitko V, Burridge LE (1981) Uptake and excretion of aminocarb and pesticide diluent 585 by mussels (Mytilus edulis). Bull Environ Contam Toxicol 24: 575–581.

    Article  Google Scholar 

  • McLeese DW, Zitko V, Sergeant DB (1979) Uptake and excretion of fenitrothion by clams and mussels. Bull Environ Contam Toxicol 22: 800–806.

    Article  CAS  Google Scholar 

  • Meems N, Steinberg CEW, Wiegand C (2004) Direct and interacting toxicological effects on the waterflea (Daphnia magna) by natural organic matter, synthetic humic substances and cypermethrin. Sci Total Environ 319: 123–136.

    Article  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolate of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53: 292–297.

    Article  CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalophos by algae isolated from soil. Bull Environ Contam Toxicol 39: 251–256.

    Article  CAS  Google Scholar 

  • Mehetre ST, Kale SP, Sherkhane PD, Murthy NBK (2002) Uptake of 14C-DDE by marine clams. J Nuclear Agric Biol 31: 105–109.

    CAS  Google Scholar 

  • Merlin G, Vuillod M, Lissolo T, Clement B (2002) Fate and bioaccumulation of isoproturon in outdoor aquatic microcosms. Environ Toxicol Chem 21: 1236–1242.

    Article  CAS  Google Scholar 

  • Metcalf RL (1976) Laboratory model ecosystem evaluation of the chemical and biological behavior of radiolabeled micropollutants. Environ Qual Saf 5: 141–151.

    Google Scholar 

  • Metcalf RL, Booth GM, Schuth CK, Hansen DJ, Lu PY (1973a) Uptake and fate of 2-ethylhexylphthalate in aquatic organisms and in a model ecosystem. Environ Health Perspect 4: 27–34.

    Article  CAS  Google Scholar 

  • Metcalf RL, Kapoor IP, Lu PY, Schuth CK, Sherman P (1973b) Model ecosystem studies of the environmental fate of six organochlorine pesticides. Environ Health Perspect 4: 35–44.

    Article  CAS  Google Scholar 

  • Metcalf RL, Lu PY, Bowlus S (1975) Degradation and environmental fate of 1-(2,6-difluorobenzoyl)-3- (4-chlorophenyl)urea. J Agric Food Chem 23: 359–364.

    Article  CAS  Google Scholar 

  • Metcalf RL, Sanborn JR (1975) Pesticides and environmental quality in Illinois. Ill Nat Hist Surv Bull 31: 381–436.

    Google Scholar 

  • Metcalf RL, Sangha GK, Kapoor IP (1971) Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ Sci Technol 5: 709–713.

    Article  CAS  Google Scholar 

  • Meyer GM, Meyer EI, Meyns S (2000) Lipid content of stream macroinvertebrates. Arch Hydrobiol 147: 447–463.

    Google Scholar 

  • Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gonchie S (1999) Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18: 664–672.

    Article  CAS  Google Scholar 

  • Michel XR, Beasse C, Narbonne JF (1995) In vivo metabolism of benzo[a]pyrene in the mussel Mytilus galloprovinciallis. Arch Environ Contam Toxicol 28: 215–222.

    Article  CAS  Google Scholar 

  • Miller JDA (1962) Fats and steroids. In: Physiology and Biochemistry of Algae. Lewin RA (ed) Academic Press, New York, Chapter 21, pp 357–370.

    Google Scholar 

  • Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide propanil in the aquatic plant Lemna minor. Chemosphere 62: 275–284.

    Article  CAS  Google Scholar 

  • Miyamoto J, Klein W, Takimoto Y, Roberts TR (1985) Critical evaluation of model ecosystems. Pure Appl Chem 57: 1523–2536.

    Article  CAS  Google Scholar 

  • Miyamoto J, Mikami N, Takimoto Y (1990) The fate of pesticides in aquatic ecosystems. In: Progress in Pesticide Biochemistry and Toxicology. Environmental Fate of Pesticides. Hutson DH, Roberts TR (eds) John Wiley & Sons, Ltd., New York, vol 7, Chapter 6, pp 123–147.

    Google Scholar 

  • Miyamoto J, Takimoto Y, Mihara K (1979) Metabolism of organophosphorus insecticides in aquatic organisms, with special emphasis on fenitrothion. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. Khan MAQ, Lech JJ, Menn JJ (eds) ACS Symp Ser 99, American Chemical Society, Washington, DC, Chapter 1, pp 3–20.

  • Miyamoto M, Tanaka H, Katagi T (2008) Ecotoxicological risk assessment of pesticides in aquatic ecosystems. Sumitomo Kagaku R & D Report, vol 1, pp 1–18.

    Google Scholar 

  • Miyazaki S, Thorsteinson AJ (1972) Metabolism of DDT by freshwater diatom. Bull Environ Contam Toxicol 8: 81–83.

    Article  CAS  Google Scholar 

  • Møhlenberg F, Petersen S, Gustavsson K, Lauridsen T, Friberg N (2001) Mesocosm experiments in the approval procedure for pesticides – a literature study on effects of mesocosm characteristics and validity of extrapolation methods to protect sensitive species. Pesticide Research No. 56, Danish Environmental Protection Agency, Denmark, pp 107.

    Google Scholar 

  • Moita F, Siegfried BD, Scharf ME, Lydy MJ (2000) Atrazine induction of cytochrome P450 in Chironomus tentans larvae. Chemosphere 40: 285–291.

    Article  Google Scholar 

  • Moody RP, Greenhalgh R, Lockhart L, Weinberger P (1978) The fate of fenitrothion in an aquatic ecosystem. Bull Environ Contam Toxicol 19: 8–14.

    Article  CAS  Google Scholar 

  • Moore R, Toro E, Stanton M, Khan MAQ (1977) Absorption and elimination of 14C-alpha and gamma chlordane by a freshwater alga, daphnid and goldfish. Arch Environ Contam Toxicol 6: 411–420.

    Article  CAS  Google Scholar 

  • Morrison HA, Gobas FAPC, Lazar R, Haffner GD (1996) Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ Sci Technol 30: 3377–3384.

    Article  CAS  Google Scholar 

  • Mostafa FIY, Helling CD (2001) Isoproturon degradation as affected by the growth of two algal species at different concentrations and pH values. J Environ Sci Health B36: 709–727.

    CAS  Google Scholar 

  • Mostafa IY, Shabana EF, Khalil Z, Mostafa FIY (1991) The metabolic fate of 14C-parathion by some fresh water phytoplankton and its possible effects on the algal metabolism. J Environ Sci Health B26: 499–512.

    CAS  Google Scholar 

  • Muir DCG, Grift NP, Townsend BE, Metner DA, Lockhart WL (1982) Comparison of the uptake and bioconcentration of fluridone and terbutryn by rainbow trout and Chironomus tentans in sediment and water systems. Arch Environ Contam Toixicol 11: 595–602.

    Article  CAS  Google Scholar 

  • Muir DCG, Kenny DF, Grift NP, Robinson RD, Titman RD, Murkin HR (1991) Fate and acute toxicity of bromoxynil esters in an experimental prairie wetland. Environ Toxicol Chem 10:395–406.

    Article  CAS  Google Scholar 

  • Muir DCG, Rawn GP, Grift NP (1985a) Fate of the pyrethroid insecticide deltamethrin in small ponds: A mass balance study. J Agric Food Chem 33: 603–609.

    Article  CAS  Google Scholar 

  • Muir DCG, Rawn GP, Townsend BE, Lockhart WL, Greenhalgh R (1985b) Bioconcentration of cypermethrin, deltamethrin, fenvalerate and permethrin by Chironomus tentans larvae in sediment and water. Environ Toxicol Chem 4: 51–61.

    CAS  Google Scholar 

  • Muir DCG, Townsend BE, Lockhart WL (1983) Bioavailability of six organic chemicals to Chironomus tentans larvae in sediment and water. Environ Toxicol Chem 2: 269–281.

    CAS  Google Scholar 

  • Muir DCG, Yarechewski AL, Neal BR (1992) Influence of surface films on the fate of deltamethrin following aerial application to prairie ponds. Environ Toxicol Chem 11:581–591.

    Article  CAS  Google Scholar 

  • Murakami Y, Fukushima S, Nishimune T, Sueki K, Tanaka R (1990) Examination of pollution by organochlorine herbicides and fungicides in Yodo River and Osaka Bay (Studies on environmental contaminants in food. 3) J Food Hyg Soc Jpn 31: 36–43.

    Google Scholar 

  • Murakami Y, Nishimura T, Sueki K (1993) Studies on a rice plant pesticide – Oxadiazon and its metabolites in shellfishes. Toxicol Environ Chem 38: 119–129.

    Article  CAS  Google Scholar 

  • Murphy KJ, Mooney BD, Mann NJ, Nichols PD, Sinclair AJ (2002) Lipid, FA, and sterol composition of New Zealand green lipped mussel (Perna canaliculus) and Tasmanian blue mussel (Mytilus edulis). Lipids 37: 587–595.

    Article  CAS  Google Scholar 

  • Murthy RC, Sarena P (1980) Esterase activity in the hepatopancreas of Macrobrachium lamarrei (Crustacea: Decapoda). Experientia 36: 323–325.

    Article  CAS  Google Scholar 

  • Nakajima N, Ohshima Y, Edmonds JS, Tamaoki M, Kubo A, Aono H, Saji H, Morita M (2004) Glucosylation of bisphenol a by various plant species. Phyton (Austria) 45: 471–476.

    Google Scholar 

  • Nakamura T, Mochida K (1988) Kinetic evaluation of the uptake and decomposition of pesticides by algae (1). J Pestic Sci 13: 93–98.

    CAS  Google Scholar 

  • Naqvi SM, Flagge CT, Hawkins RL (1990) Arsenic uptake and depuration by red crayfish, Procambarus clarkii, exposed to various concentration of monosodium methanearsonate (MSMA) herbicide. Bull Environ Contam Toxicol 45: 94–100.

    Article  CAS  Google Scholar 

  • Naqvi SM, Newton DJ (1990) Bioaccumulation of endosulfan (Thiodan insecticide) in the tissues of Luisiana crayfish, Procambarus clarkii. J Environ Sci Health B25: 511–526.

    CAS  Google Scholar 

  • Narayana Rao VVS, Lal R (1987) Uptake and metabolism of insecticides by blue-green algae Anabaena and Aulosira fertilissima. Microbios Lett 36: 143–147.

    Google Scholar 

  • Narro ML, Cerniglia CE, van Baalen C, Gibson DT (1992a) Metabolism of phenanthrene by the marine cyanobacterium Armenellum quadruplicatum PR-6. Appl Environ Microbiol 58: 1351–1359.

    CAS  Google Scholar 

  • Narro ML, Cerniglia CE, van Baalen C, Gibson DT (1992b) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58: 1360–1363.

    CAS  Google Scholar 

  • Nawaz S, Kirk KL (1995) Temperature effects on bioconcentration of DDE by Daphnia. Freshwater Biol 34: 173–178.

    Google Scholar 

  • Nebeker AV, Griffis WL, Wise CM, Hopkins E, Barbitta JA (1989) Survival, reproduction and bioconcentration in invertebrates and fish exposed to hexachlorobenzene. Environ Toxicol Chem 8: 601–611.

    Article  CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in fish . Environ Sci Technol 8: 1113–1115.

    Article  CAS  Google Scholar 

  • Neudorf S, Khan MAQ (1975) Pick-up and metabolism of DDT, dieldrin and photodieldrin by a freshwater akga (Ankistrodesmus amalloides) and a microcrustacean (Daphnia pulex). Bull Environ Contam Toxicol 13: 443–450.

    Article  CAS  Google Scholar 

  • Neumann W, Leasch H, Urbach W (1987) Mechanisms of herbicide sorption in microalgae and the influence of environmental factors. Pestic Biochem Physiol 27: 189–200.

    Article  CAS  Google Scholar 

  • Nikkilä A, Halme A, Kukkonen JVK (2003) Toxicokinetics, toxicity and lethal body residues of two chlorophenols in the oligochaete worm, Lumbriculus variegatus, in different sediments. Chemosphere 51: 35–46.

    Article  Google Scholar 

  • Nikkilä A, Paulsson M, Almgren, Blanck H, Kukkonen JVK (2001) Atrazine uptake, elimination, and bioconcentration by periphyton communities and Daphnia magna: Effects of dissolved organic carbon. Environ Toxicol Chem 20: 1003–1011.

    Google Scholar 

  • Nordone AJ, Dotson TA, Kovacs MF, Doane R, Biever RC (1998) Metabolism of [14C]acrolein (Magnacide H® Herbicide): Nature and magnitude of residues in freshwater fish and shellfish. Environ Toxicol Chem 17: 276–281.

    CAS  Google Scholar 

  • Nuutinen S, Landrum PF, Schuler LJ, Kukkonen JVK, Lydy MJ (2003) Toxicokinetics of organic contaminants in Hyalella azteca. Arch Environ Contam Toxicol 44: 467–475.

    Article  CAS  Google Scholar 

  • Nzengung VA, O’Neill WL, McCutcheon SC, Wolfe NL (2003) Sequestration and transformation of water soluble halogenated organic compounds using aquatic plants, algae, and microbial mats. In: Phytoremediation: Transformation and Control of Contaminants. John Wiley & Sons, Inc., Chichester, Chapter 16, pp 499–528.

    Google Scholar 

  • Ohkawa H, Kikuchi R, Miyamoto J (1980) Bioaccumulation and biodegradation of the (S)-acid isomer of fenvalerate (Sumicidin®) in an aquatic model ecosystem. J Pestic Sci 5: 11–22.

    CAS  Google Scholar 

  • Ohyama T, Jin K, Katoh Y, Chiba Y, Inoue K (1987) Fate and behavior of herbicides, butachlor, CNP, chlomethoxynil and simetryn in river water, shellfish and sediments of the Ishikari River. Bull Environ Contam Toxicol 39: 555–562.

    Article  CAS  Google Scholar 

  • O’Kelley JC, Deason TR (1976) Degradation of pesticides by algae. EPA-600/3-76-022, PB 251933, Office of Research and Development, US Environmental Protection Agency, Washington, DC, pp 41.

    Google Scholar 

  • Oliver BG (1984) Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. Can J Fish Aquat Sci 41: 878–883.

    Article  CAS  Google Scholar 

  • Oliver BG (1987) Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ Sci Technol 21: 785–790.

    Article  CAS  Google Scholar 

  • Omura T, Sato R (1964) The carbon-monoide-binding pigment of liver microsomes. I. Exidence for its hemoprotein nature. J Biol Chem 239: 2370–2378.

    CAS  Google Scholar 

  • Opperhulzen A, Serné P, Van der Steen JMD (1988) Thermodynamics of fish/water and octa-1-ol/water partitioning of some chlorinated benzenes. Environ Sci Technol 22: 286–292.

    Article  Google Scholar 

  • Opperhulzen A, Velde Ewvd, Gobas FAPC, Leim DAK, Steen JMDvd, Hutzinger O (1985) Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14: 1871–1896.

    Article  Google Scholar 

  • Ortíz RG, Martínez-Tabche L, Terrón SO (2004) Effects of cimetidine and phenobarbital on methyl parathion metabolism in Hyalella azteca. Bull Environ Contam Toxicol 72: 1247–1252.

    Google Scholar 

  • Oshima Y, Kobayashi K, Hidaka C, Izu S, Imada N (1994) Differences in the drug-metabolizing enzyme activities among fish and bivalves living in waters near industrial and non-industrial areas. Bull Environ Contam Toxicol 53: 106–112.

    Article  CAS  Google Scholar 

  • Ozretić B, Krajnović-Ozretić M (1992) Esterase heterogeneity in mussel Mytilus galloprovincialis: Effects of organophosphate and carbamate insecticides in vitro. Comp Biochem Physiol 103C: 221–225.

    Google Scholar 

  • Paris DF, Lewis DL (1976) Accumulation of methoxychlor by microorganisms isolated from aqueous systems. Bull Environ Contam Toxicol 15: 24–32.

    Article  CAS  Google Scholar 

  • Pascal-Lorber S, Rathahao E, Cravedi JP, Laurent F (2004) Metabolic fate of [14C]-2,4-dichlorophenol in macrophytes. Chemosphere 56: 275–284.

    Article  CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1972) Metabolic transformation of DDT, dieldrin, aldrin and endrin by marine microorganisms. Environ Sci Technol 6: 629–632.

    Article  CAS  Google Scholar 

  • Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-tronitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 17: 2266–2273.

    CAS  Google Scholar 

  • Pavlostathis SG, Jackson GH (1999) Biotransformation of 2,4,6-trinitrotoluene in Anabaena sp. cultures. Environ Toxicol Chem 18: 412–419.

    CAS  Google Scholar 

  • Peters LD, Nasci C, Livingstone DR (1998) Immunochemical investigations of cytochrome P450 forms/epitopes (CYP1A, 2B, 2E, 3A and 4A) in digestive gland of Mytilus sp. Comp Biochem Physiol 121C: 361–369.

    CAS  Google Scholar 

  • Petrocelli SR, Hanks AR, Andersen J (1973) Uptake and accumulation of an organochlorine insecticide (dieldrin) by an estuarine mollusc, Rangia cuneata. Bull Environ Contam Toxicol 10: 315–320.

    Article  CAS  Google Scholar 

  • Petroutsos D, Wang J, Katapodis P, Kekos D, Sommerfeld M, Hu Q (2007) Toxicity and metabolism of p-chlorophenol in the marine microalga Tetraselmis marina. Aquat Toxicol 85: 192–201.

    Article  CAS  Google Scholar 

  • Petushok N, Gabryelak T, Patecz D, Zavodnik L, Szollosi Varga I, Deér KA (2002) Comparative study of the xenobiotic metabolizing system in the digestive gland of the bivalve molluscs in different aquatic ecosyetms and in aquaria experiments. Aquat Toxicol 61: 65–72.

    Article  CAS  Google Scholar 

  • Pflugmacher S, Sandermann Jr H (1998a) Taxonomic distribution of plant glucosyltransferses activity on xenobiotics. Phytochemistry 49: 507–511.

    Article  CAS  Google Scholar 

  • Pflugmacher S, Sandermann Jr H (1998b) Cytochrome P450 monooxygenases for fatty acid and xenobiotics in marine macroalgae. Plant Physiol 117: 123–128.

    Article  CAS  Google Scholar 

  • Pflugmacher S, Schröder P, Sandermann Jr H (2000) Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochem 54: 267–273.

    Article  CAS  Google Scholar 

  • Pflugmacher S, Steinberg C (1997) Activity of phase I and phase II detoxication enzymes in aquatic macrophytes. Angew Bot 71: 144–146.

    CAS  Google Scholar 

  • Pflugmacher S, Wiencke C, Sandermann Jr H (1999) Activity of phase I and phase II detoxication enzymes in Antarctic and Arctic macroalgae. Mar Environ Res 48: 23–36.

    Article  CAS  Google Scholar 

  • Pietsch C, Krause E, Burnison BK, Steinberg CEW, Pflugmacher S (2006) Effects and metabolism of the phenylurea herbicide isoproturon in the submerged macrophyte Ceratophyllum demersum L. J Appl Bot Food Qual 80: 25–30.

    CAS  Google Scholar 

  • Pillai MKK, Mittal PK, Agarwal HC (1980) Bioaccumulation, metabolism & elimination of DDT by the freshwater clam Indonaia caerulea (Lea). Indian J Exp Biol 18: 1439–1442.

    CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24: 2047–2051.

    Article  CAS  Google Scholar 

  • Pirini M, Trigari G, Manuzzi MP, Ventrella V, Pagliarani A, Trombetti F, Borgatti AR (2000) Seasonal changes in the lipid pattern of Mytilus galloprovincialis and evaluation of nutritional quality. Italian J Biochem 49: 99–100.

    CAS  Google Scholar 

  • Pollio A, Pinto G, Greca MD, De Maio A, Fiorentino A, Previtera L (1994) Progesterone bioconversion by microalgal cultures. Phytochem 37: 1269–1272.

    Article  CAS  Google Scholar 

  • Pridham JB (1964) The phenol glucosylation reaction in the plant kingdom. Phytochemistry 3: 493–497.

    Article  CAS  Google Scholar 

  • Quigley MA, Cavaletto JF, Gardner WS (1989) Lipid composition related to size and maturity of the amphipod Pontoporeia hoyi. J Great Lakes Res 15: 601–610.

    Article  CAS  Google Scholar 

  • Rajendran N, Venugopalan VK (1991) Bioconcentration of endosulfan in different body tissues of estuarine organisms under sublethal exposure. Bull Environ Contam Toxicol 46: 151–158.

    Article  CAS  Google Scholar 

  • Rakotondravelo ML, Anderson TD, Charlton RE, Zhu KY (2006) Sublethal effects of three pesticides on activities of selected target and detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 51: 360–366.

    Article  CAS  Google Scholar 

  • Rao VVSN, Lal R (1987) Uptake and metabolism of insecticides by blue-green algae Anabaena and Aulosira fertilissima. Microbios Lett 36: 143–147.

    CAS  Google Scholar 

  • Rathore DS, Kumar A, Kumar HD (1993) Lipid profiles of three microalgae. Phykos 32: 1–8.

    CAS  Google Scholar 

  • Ravi V, Balakumar T (1998) Biodegradation of the C–P bond in glyphosate by the cyanobacterium Anabaena variabilis L. J Sci Ind Res 57: 790–794.

    CAS  Google Scholar 

  • Reichert WL, Le Eberhart BT, Varanasi U (1985) Exposure of two species of deposit-feeding amphipods to sediment-associated [3H]benzo[a]pyrene: Uptake, metabolism and covalent binding to tissue macromolecules. Aquat Toxicol 6: 45–56.

    Article  CAS  Google Scholar 

  • Reinert RE (1972) Accumulation of dieldrin in an alga (Scenedesmus obliquus), Daphnia magna and the guppy (Poecilia reticulate). J Fish Res Bd Canada 29: 1413–1418.

    CAS  Google Scholar 

  • Renberg L, Tarkpea M, Lindén E (1978) The use of the bivalve Mytilus edulis as a test organism for bioconcentration studies. I. Designing a continuous-flow system and its application to some organochlorine compounds. Ecotoxicol Environ Saf 9: 171–178.

    Article  Google Scholar 

  • Rewitz KF, Styrishave B, Løbner-Olesen, Andersen O (2006) Marine invertebrate cytochrome P-450: Emerging insights from vertebrate and insect analogies. Comp Biochem Physiol 143C: 363–381.

    CAS  Google Scholar 

  • Rice CP, Sikka HC (1973) Uptake and metabolism of DDT by six species of marine algae. J Agric Food Chem 21: 148–152.

    Article  CAS  Google Scholar 

  • Richardson GM, Qadri SU, Jessiman B (1983) Acute toxicity, uptake and clearance of aminocarb by the aquatic isopod, Caecidolea racovitzai racovitzai. Ecotoxicol Environ Saf 7: 552–557.

    Article  CAS  Google Scholar 

  • Richter S, Nagel R (2007) Bioconcentration, biomagnification and metabolism of 14C-terbutryn and 14C-benzo[a]pyrene in Gammarus fossarum and Asellus aquaticus. Chemosphere 66: 603–610.

    Article  CAS  Google Scholar 

  • Roghair CJ, Buijze A, Yedema E, Hermans JLM (1992) Toxicity and toxicokinetics for benthic organisms: I: Toxicity and BCF values of chlorobenzenes to Chironomus riparius in water only experiments. RIVM Report 719101002, Rijksinstituut voor Volksgezondheid en Milieu RIVM, http://www.rivm.nl/bibliotheek/rapporten/719101002.html.

  • Rose FL, McIntire CD (1970) Accumulation of dieldrin by benthic algae in laboratory streams. Hydrobiologia 35: 481–493.

    Article  CAS  Google Scholar 

  • Roy S, Hänninen O (1994) Pentachlorophenol: Uptake/elimination kinetics and metabolism in an aquatic plant, Eichhornia crassipes. Environ Toxicol Chem 13: 763–773.

    CAS  Google Scholar 

  • Rust AJ, Burgess RM, Brownawell BJ, McRlroy AE (2004) Relationship between metabolism and bioaccumulation of benzo[a]pyrene in benthic invertebrates. Environ Toxicol Chem 23: 2587–2593.

    Article  CAS  Google Scholar 

  • Sabaliūnas D, Lazutka J, Sabaliūniene I, Södergren A (1998) Use of semipermeable membrane devices for studying effects of organic pollutants: Comparison of pesticide uptake by semipermeable membrane devices and mussels. Environ Toxicol Chem 17: 1815–1824.

    Google Scholar 

  • Safonova E, Kvitko K, Kuschk P, Möder M, Reisser W (2005) Biodegradation of phenanthrene by the green alga Scenedesmus obliquus ES-55. Eng Life Sci 5: 234–239.

    Article  CAS  Google Scholar 

  • Sanborn HR, Malins DC (1980) The disposition of aromatic hydrocarbons in adult spot shrimp (Pandalus platyceros) and the formation of metabolites of naphthalene in adult and larval spot shrimp. Xenobiotica 10: 193–200.

    Article  CAS  Google Scholar 

  • Sanborn JR, Metcalf RL, Bruce WN, Lu PY (1976) The fate of chlordane and toxaphene in a terrestrial-aquatic model ecosystem. Environ Entmol 5: 533–538.

    CAS  Google Scholar 

  • Sanborn JR, Yu CC (1973) The fate of dieldrin in a small ecosystem. Bull Environ Contam Toxicol 10: 340–346.

    Article  CAS  Google Scholar 

  • Sanders HO, Hunn JB (1982) Toxicity, bioconcentration and depuration of the herbicide Bolero 8EC in freshwater invertebrates and fish. Bull Jpn Soc Sci Fish 48: 1139–1143.

    CAS  Google Scholar 

  • Sathe MC, Shrotri RV, Raghu K, Murthy NBK (2005) Observation on accumulation and depuration of fenthion in various tissues of marine edible clam, Marcia haintina (Lamarck). J Ecophysiol Occup Health 5: 33–36.

    CAS  Google Scholar 

  • Saxena DM, Lal R, Reddy BVP (1982) DDT uptake and metabolism in Blepharisma intermedium. Acta Protozool 21: 173–175.

    CAS  Google Scholar 

  • Schauberger CW, Wildman RB (1977) Accumulation of aldrin and dieldrin by blue-green algae and related effects on photosynthetic pigments. Bull Environ Contam Toxicol 17: 534–541.

    Article  CAS  Google Scholar 

  • Schell Jr JD, James MO (1989) Glucose and sulfate conjugation of phenolic compounds by the spiny lobster (Panulirus argus). J Biochem Toxicol 4: 133–138.

    Article  CAS  Google Scholar 

  • Schimmel SC, Garnas RL, Patrick Jr JM, Moore JC (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem 31: 104–113.

    Article  CAS  Google Scholar 

  • Schimmel SC, Patrick Jr JM, Forester J (1977) Uptake and toxicity of toxaphene in several estuarine organisms. Arch Environ Contam Toxicol 5: 353–367.

    Article  CAS  Google Scholar 

  • Schlenk D (2005) Pesticide biotransformation in fish. In: Biochemistry and Molecular Biology of Fishes. Environmental Toxicology. Mommsen TP, Moon TW (eds) Elsevier B.V., Amsterdam vol 6, Chapter 6, pp 171–190.

    Google Scholar 

  • Schlenk D, Buhler DR (1988) Cytochrome P450 and phase II activities in the gumboot chiton Cryptochiton stelleri. Aquat Toxicol 13: 167–182.

    Article  CAS  Google Scholar 

  • Schlenk D, Buhler DR (1989a) Determination of multiple forms of cytochrome P-450 in microsomes from the digestive gland of Cryptochiton stelleri. Biochem Biophys Res Commun 163: 476–480.

    Article  CAS  Google Scholar 

  • Schlenk D, Buhler DR (1989b) Xenobiotic biotransformation in the Pacific oyster (Crassostrea Gigas). Comp Biochem Physiol 94C: 469–475.

    CAS  Google Scholar 

  • Schmidt K, Pflugmacher S, Staaks GBO, Steunberg CEW (2006) The influence of tributyltin chloride and polychlorinated biphenylas on swimming behavior, body growth, reproduction, and activity of biotransformation enzymes in Daphnia magna. J Freshwater Ecol 21: 109–120.

    CAS  Google Scholar 

  • Schoeny R, Cody T, Warshawsky D, Radike M (1988) Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutat Res 197: 289–302.

    CAS  Google Scholar 

  • Schooley DA, Quinstad GB (1979) Metabolism of insect growth regulators in aquatic organisms. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. Khan MAQ, Lech JJ, Menn JJ (eds) ACS Symp Ser 99, American Chemical Society, Washington, DC, Chapter 10, pp 161–176.

    Google Scholar 

  • Schramm KW, Behechti A, Beck B, Kettrup A (1998) Influence of an aquatic humic acid on the bioconcentration of selected compounds in Daphnia magna. Ecotoxicol Environ Saf 41: 73–76.

    Article  CAS  Google Scholar 

  • Schrenk C, Pflugmacher S, Brüggemann R, Sandermann Jr H, Steinberg CEW, Kettrup A (1998) Glutathione S-transferase activity in aquatic macrophytes with emphasis on habitat dependence. Ecotoxicol Environ Saf 40: 226–233.

    Article  CAS  Google Scholar 

  • Schuler LJ, Wheeler M, Bailer AJ, Lydy MJ (2003) Toxicokinetics of sediment-sorbed benzo[a]pyrene and hexachlorobiphenyl using the freshwater invertebrates Hyalella azteca, Chironomus tentans and Lumbriculus variegatus. Environ Toxicol Chem 22: 439–449.

    CAS  Google Scholar 

  • Schuphan I (1974) Zum metabolismus von phenylharnstoffen. III. Metabolismus von monolinuron-O-methyl 14C in Chlorella pyrenodoisa. Chemosphere 3: 131–134.

    Article  CAS  Google Scholar 

  • Schuth CK, Isensee AR, Woolson EA, Kearney PC (1974) Distribution of 14C and arsenic derived from [14C]cacodylic acid in an aquatic ecosystem. J Agric Food Chem 22: 999–1003.

    Article  CAS  Google Scholar 

  • Schuytema GS, Krawczyk DF, Griffis WL, Nebeker AV, Robideaux ML (1990) Hexachlorobenzene uptake by fathead minnows and macroinvertebrates in recirculating sediment/water systems. Arch Environ Contam Toxicol 19: 1–9.

    Article  CAS  Google Scholar 

  • Schuytema GS, Krawczyk DF, Griffis WL, Nebeker AV, Robideaux ML, Brownawell BJ, Westall JC (1988) Comparative uptake of hexachlorobenzene by fathead minnows, amphipods and oligochaete worms from water and sediment. Environ Toxicol Chem 7: 1035–1045.

    Article  CAS  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Arch Environ Microbiol 62: 1265–1273.

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170: 291–300.

    Article  CAS  Google Scholar 

  • Serrano R, Hernández F, López FJ, Peña JB (1997a) Bioconcentration and depuration of chlorpyrifos in the marine mollusk Mytilus edulis. Arch Environ Contam Toxicol 33: 47–52.

    Article  CAS  Google Scholar 

  • Serrano R, Hernández F, Peña JB, Dosda V, Canales J (1995) Toxicity and bioconcentration of selected organophosphorus pesticides in Mytilus galloprovincialis and Venus gallina. Arch Environ Contam Toxicol 29: 284–290.

    Article  CAS  Google Scholar 

  • Serrano R, López FJ, Hernández F, Peña JB (1997b) Bioconcentration of chlorpyrifos, chlorfenvinphos and methidathion in Mytilus galloprovincialis. Bull Environ Contam Toxicol 59: 968–975.

    Article  CAS  Google Scholar 

  • Serrano R, López FJ, Roig-Navarro A, Hernández F (1997c) Automated sample clean-up and fractionation of chlorpyrifos, chlorpyrifos-methyl and metabolites in mussels using normal-phase liquid chromatography. J Chromatogr A 778: 151–160.

    Article  CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52: 3030–3035.

    Article  CAS  Google Scholar 

  • Sharma HA, Barber JT, Ensley HE, Polito MA (1997) A comparison of the toxicity and metabolism of phenol and chlorinated phenols by Lemna gibba, with special reference to 2,4,5-trichlorophenol. Environ Toxicol Chem 16: 346–350.

    CAS  Google Scholar 

  • Shaw GR, Connell DW (1984) Physicochemical properties controlling polychlorinated biphenyl (PCB) concentrations in aquatic organisms. Environ Sci Technol 18: 18–23.

    Article  CAS  Google Scholar 

  • Shaw GR, Connell DW (1987) Comparative kinetics for bioaccumulation of polychlorinated biphenyls by the polychaete (Capitella capitata) and fish (Mugil cephalus). Ecotoxicol Environ Saf 13: 84–91.

    Article  CAS  Google Scholar 

  • Shaw B, Hopke PK (1975) The dynamics of diquat in a model eco-system. Environ Lett 8: 325–335.

    Article  CAS  Google Scholar 

  • Shofer SL, Tjeerdema RS (1993) Comparative disposition and biotransformation of pentachlorophenol in the oyster (Crassostrea gigas) and abalone (Haliotis fulgens). Pestic Biochem Physiol 46: 85–95.

    Article  CAS  Google Scholar 

  • Sikka HC, Lynch RS, Lindenberger M (1974) Uptake and metabolism of dichlobenil by emersed aquatic plants. J Agric Food Chem 22: 230–234.

    Article  CAS  Google Scholar 

  • Sims JG, Steevens JA (2008) The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella Azteca. Ecotoxicol Environ Saf 70: 38–46.

    Article  CAS  Google Scholar 

  • Skoglund RS, Stange K, Swackhamer DL (1996) A kinetics model for predicting the accumulation of PCBs in phytoplankton. Environ Sci Technol 30: 2113–2120.

    Article  CAS  Google Scholar 

  • Snyder MJ (2000) Cytochrome P450 enzymes in aquatic invertebrates: Recent advances and future directions. Aquat Toxicol 48: 529–547.

    Article  CAS  Google Scholar 

  • Södergren A, Svensson B (1973) Uptake and accumulation of DDT and PCB by Ephemera danica (Ephemeroptera) in continuous-flow systems. Bull Environ Contam Toxicol 9: 345–350.

    Article  Google Scholar 

  • Soeder CJ, Hegewald E, Kneifel H (1987) Green microalgae can use naphthalenesulfonic acid as sources of sulfur. Arch Microbiol 148: 260–263.

    Article  CAS  Google Scholar 

  • Solé M, Livingstone DR (2005) Components of the cytochrome P450-dependent monooxygenase system and “‘NADPH-independent benzo[a]pyrene hydroxylase” activity in a wide range of marine invertebrate species. Comp Biochem Physiol 141C: 20–31.

    Google Scholar 

  • Southworth GR, Beauchamp JJ, Schmieder PK (1978) Bioaccumulation potential of polycyclic aromatic hydrocarbons in Daphnia pulex. Water Res 12: 973–977.

    Article  CAS  Google Scholar 

  • Spacie A, Hamelink JL (1982) Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem 1: 309–320.

    Article  CAS  Google Scholar 

  • Spehar RL, Tanner DK, Gibson JH (1982) Effects of kelthane and pydrin on early life stage of fathead minnows (Pimephales promelas) and amphipods (Hyalella azteca). In: Aquatic Toxicology and Hazard Assessment: Fifth Conference, Pearson RB, Foster RB, Bishop WE (eds) ASTM STP 766, ASTM, West Conshohocken, pp 234–244.

    Google Scholar 

  • Spehar RL, Tanner DK, Nordling BR (1983) Toxicity of the synthetic pyrethroids, permethrin and AC 222,705 and their accumulation in early life stages of fathead minnows and snails. Aquat Toxicol 3: 171–182.

    Article  CAS  Google Scholar 

  • Standley LJ (1997) Effect of sedimentary organic matter composition on the partitioning and bioavailability of dieldrin to the oligochaete Lumbriculus variegates. Environ Sci Technol 31: 2577–2583.

    Article  CAS  Google Scholar 

  • Stange K, Swackhamer DL (1994) Factors affecting phytoplankton species-specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environ Toxicol Chem 13: 1849–1860.

    Article  CAS  Google Scholar 

  • Stehly GR, Landrum PF, Henry MG, Klemm C (1990) Toxicokinetics of PAHs in Hexageniza. Environ Toxicol Chem 9: 169–174.

    Google Scholar 

  • Stenersen J, Kobro S, Bjerke M, Arend U (1987) Glutathione transferases in aquatic and terrestrial animals from nine phyla. Comp Biochem Physiol 86C: 73–82.

    CAS  Google Scholar 

  • Stief P, Eller G (2006) The gut microenvironment of sediment-dwelling Chironomus plumosus larvae as characterized with O2, pH, and redox microsensors. J Comp Physiol B 176: 673–683.

    Article  CAS  Google Scholar 

  • Sturm A, Hansen PD (1999) Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicol Environ Saf 42: 9–15.

    Article  CAS  Google Scholar 

  • Subramanian G, Sekar S, Sampoornam S (1994) Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int Biodeterior Biodegradation 33: 129–143.

    Article  Google Scholar 

  • Sukhija PS, Singh M, Bhatia IS (1979) Lipid composition and fatty acid synthesis in the blue green alga Anabaena doliolum. Biochem Physiol Pflanzen 174: 685–690.

    CAS  Google Scholar 

  • Sundaram KMS (1995) Distribution, persistence, and fate of mexacarbate in the aquatic environment of a mixed-wood boreal forest. J Environ Sci Health B30: 651–683.

    CAS  Google Scholar 

  • Sundaram KMS, Szeto SY (1979) A study on the lethal toxicity of aminocarb to freshwater crayfish and its in vitro metabolism. J Environ Sci Health B14: 589–602.

    CAS  Google Scholar 

  • Suora KE, Fisher SW (1986) Effect of pH on the environmental fate of [14C] aldicarb in an aquatic microcosm. Ecotoxicol Environ Saf 11: 81–90.

    Article  Google Scholar 

  • Sushchick NN, Gladyshev MI, Moskvichova AV, Makhutova ON, Kalachova GS (2003) Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river. Comp Biochem Physiol B 134: 111–122.

    Article  Google Scholar 

  • Swackhamer DL, Skoglund RS (1993) Bioaccumulation of PCBs by algae: Kinetics versus equilibrium. Environ Toxicol Chem 12: 831–838.

    Article  CAS  Google Scholar 

  • Sweeney RA (1969) Metabolism of lindane by unicellular algae. Proceedings of the 12th Conference on Great Lakes Research, International Associationforf Great Lakes Research, pp 98–102.

    Google Scholar 

  • Takimoto Y, Ohshima M, Miyamoto J (1987a) Comparative metabolism of fenitrothion in aquatic organisms. II. Metabolism in the freshwater snails, Cipangopaludina japonica and Physa acuta. Ecotoxicol Environ Saf 13: 118–125.

    Article  CAS  Google Scholar 

  • Takimoto Y, Ohshima M, Miyamoto J (1987b) Comparative metabolism of fenitrothion in aquatic organisms. III. Metabolism in the crustaceans, Daphnia pulex and Palaemon paucidens. Ecotoxicol Environ Saf 13: 126–134.

    Article  CAS  Google Scholar 

  • Tang JX, Hoagland KD, Siegfried BD (1998a) Uptake and bioaccumulation of atrazine by selected freshwater algae. Environ Toxicol Chem 17: 1085–1090.

    Article  CAS  Google Scholar 

  • Tang JX, Siegfried BD (1996) Bioconcentration and uptake of a pyrethroid and organophosphate insecticide by selected aquatic insects. Bull Environ Contam Toxicol 57: 993–998.

    Article  CAS  Google Scholar 

  • Tang JX, Siegfried BD, Hoagland KD (1998b) Glutathione-S-transferase and in vitro metabolism of atrazine in freshwater algae. Pestic Biochem Physiol 59: 155–161.

    Article  CAS  Google Scholar 

  • Tantawy MM, Braumann T, Grimme LH (1984) Uptake and metabolism of the phenylpyridazinone herbicide metflurazon during the bleaching and regeneration process of the green alga, Chlorella fusca. Pestic Biochem Physiol 22: 224–231.

    Article  CAS  Google Scholar 

  • Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydimonas sp. J Phycol 32: 598–601.

    Article  CAS  Google Scholar 

  • Teisseire H, Vernet G (2001) Effects of the fungicide folpet on the activities of antioxidative enzymes in duckweed (Lemna minor). Pestic Biochem Physiol 69: 112–117.

    Article  CAS  Google Scholar 

  • Thies F, Backhaus T, Bossmann B, Grimme LH (1996) Xenobiotic biotransformation in unicellular green algae. Plant Physiol 112: 361–370.

    Article  CAS  Google Scholar 

  • Thies F, Grimme LH (1995) O-dealkylation of coumarin and resorufin ethers by unicellular green algae: Kinetic properties of Chlorella fusca and Chlorella sorokiniana. Arch Microbiol 164: 203–211.

    CAS  Google Scholar 

  • Thomann RV, Komlos J (1999) Model of biota-sediment accumulation factor for polycyclic aromatic hydrocarbons. Environ Toxicol Chem 18: 1060–1068.

    Article  CAS  Google Scholar 

  • Thomas TM, Seaman DE (1968) Translocation studies with endothal-14C in Potamogeton nodosus Poir. Weed Res 8: 321–326.

    Article  Google Scholar 

  • Thompson Jr GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302: 17–45.

    Google Scholar 

  • Thompson HM (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 8: 369–384.

    Article  CAS  Google Scholar 

  • Thybaud E, Caquet T (1991) Uptake and elimination of lindane by Lymnaea palustris (Mollusca: gastropoda): A pharmacokinetic approach. Ecotoxicol Environ Saf 21: 365–376.

    Article  CAS  Google Scholar 

  • Thybaud E, Le Bras S (1988) Absorption and elimination of lindane by Asellus aquaticus (Crustacea, Isopoda). Bull Environ Contam Toxicol 40: 731–735.

    Article  CAS  Google Scholar 

  • Tjeerdema RS, Crosby DG (1992) Disposition and biotransformation of pentachlorophenol in the red abalone (Haliotis rufescens). Xenobiotica 22: 681–690.

    Article  CAS  Google Scholar 

  • Todd SJ, Cain RB, Schmidt S (2002) Biotransformation of naphthalene and diaryl ethers by green algae. Biodegradation 13: 229–238.

    Article  CAS  Google Scholar 

  • Tront JM, Saunders FM (2006) Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere 64: 400–407.

    Article  CAS  Google Scholar 

  • Tront JM, Saunders FM (2007) Sequestrations of a fluorinated analog of 2,4-dichlorophenol and metabolic products by L. minor as evidenced by 19F NMR. Environ Pollut 145: 708–714.

    Article  CAS  Google Scholar 

  • Tsorbatzoudi E, Vockel D, Korte F (1976) Beiträge zur ökologischer Chemie Cx1. Metabolismus von buturon-14C in algen. Chemosphere 5: 49–52.

    Article  CAS  Google Scholar 

  • Tsuge S, Kazano H, Tomizawa C (1976) Some devices in a model ecosystem for volatile compounds and its application to carbaryl and p,p -DDT. J Pestic Sci 1: 307–311.

    CAS  Google Scholar 

  • Turgut C (2005) Uptake and modeling of pesticides by roots and shoots of parrot feather (Myriophyllum aquaticum). Environ Sci Pollut Res Int 12: 342–346.

    Article  CAS  Google Scholar 

  • Tweedy BG, Loeppky C, Ross JA (1970) Metabolism of 3-(p-bromophenyl)-1-methylurea (metobromuron) by selected soil microorganisms. J Agric Food Chem 18: 851–853.

    Article  CAS  Google Scholar 

  • Ueda T, Sadakane S, Yamaoka K, Nakagawa M, Ishida M (1988) Bioaccumulation and metabolic fate of pyrazolate and its hydrolysates in guppies and short-necked clams. J Pestic Sci 13: 85–92.

    CAS  Google Scholar 

  • Ullrich WR, Ullrich-Eberius CI, Köcher H (1990) Uptake of glufosinate and concomitant membrane potential changes in Lemna gibba G1. Pestic Biochem Physiol 37: 1–11.

    Article  CAS  Google Scholar 

  • Uno S, Shiraishi H, Hatakeyama S, Otsuki A (1997) Uptake and depuration kinetics and BCFs of several pesticides in three species of shellfish (Corbicula leana, Corbicula japonica and Cipangopludina chinensis): Comparison between field and laboratory experiment. Aquat Toxicol 39: 23–43.

    Article  CAS  Google Scholar 

  • Uno S, Shiraishi H, Hatakeyama S, Otsuki A, Koyama J (2001) Accumulative characteristics of pesticide residues in organs of bivalves (Anodonta woodiana and Corbicula leana) under natural conditions. Arch Environ Contam Toxicol 40: 35–47.

    Article  CAS  Google Scholar 

  • USEPA (2007) ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. United States Environmental Protection Agency, Washington, DC, USA. http:/http://www.epa.gov/ecotox/.

  • USEPA (2008) Estimation Programs Interface Suite™ for Microsoft® Windows, v3.20. United States Environmental Protection Agency, Washington, DC, USA. http://www.epa.gov/oppt/exposure/pubs/episuite.htm.

  • Väisänen MVT, Mackenzie PI, Hänninen OOP (1983) UDP glucosyltransferase and its kinetic fluorimetric assay. Eur J Biochem 130: 141–145.

    Article  Google Scholar 

  • Valentine JP, Bingham SW (1974) Influence of several algae on 2,4-D residues in water. Weed Sci 22: 358–363.

    CAS  Google Scholar 

  • Van der Linde A, Hendriks AJ, Sijm DTHM (2001) Estimating biotransformation rate constants of organic chemicals from modeled and measured elimination rates. Chemosphere 44: 423–435.

    Article  Google Scholar 

  • Van Hattum B, Cid Montanes JF (1999) Toxicokinetics and bioconcentration of polycyclic aromatic hydrocarbons in freshwater isopods. Environ Sci Technol 33: 2409–2417.

    Article  Google Scholar 

  • Van Hattum B, Curto MJ, Cid Montanes JF (1998) Polycyclic aromatic hydrocarbons in freshwater isopods and field-partitioning between abiotic phases. Arch Environ Contam Toxicol 35: 257–267.

    Article  Google Scholar 

  • Vance BD, Drummond W (1969) Biological concentration of pesticides by algae. J Am Water Works Assoc 61: 360–362.

    Google Scholar 

  • Vance BD, Maki AW (1976) Bioconcentration of dibrom by Stigeoclonium pachydermum. Bull Environ Contam Toxicol 15: 601–607.

    Article  CAS  Google Scholar 

  • Vanderford M, Shaanks JV, Hughes JB (1997) Phytotransformation of trinitrotoluene (TNT) and distribution of metabolic products in Myriophyllum aquaticum. Biotechnol Lett 19: 277–280.

    Article  CAS  Google Scholar 

  • Varanasi U, Reichert WL, Stein JE, Brown DW, Sanborn HR (1985) Bioavailability and biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment from an urban estuary. Environ Sci Technol 19: 836–841.

    Article  CAS  Google Scholar 

  • Varó I, Serrano R, Pitarch E, Amat F, López FJ, Navarro JC (2000) Toxicity and bioconcentration of chlorpyrifos in aquatic organisms: Artemia parthenogenetica (Crustacea), Gambusia affinis and Aphanius iberus (Pisces). Bull Environ Contam Toxicol 65: 623–630.

    Article  Google Scholar 

  • Veith GC, DeFoe DL, Bergstedt BV (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36: 1040–1048

    CAS  Google Scholar 

  • Vidal ML, Narbonne JF (2000) Characterization of glutathione S-transferase activity in the Asiatic clam Corbicula fluminea. Bull Environ Contam Toxicol 64: 455–462.

    Article  CAS  Google Scholar 

  • Vidal ML, Rouimi P, Debrauwer L, Narbonne JF (2002) Purification and characterization of glutathione S-transferases from the freshwater clam Corbicula fluminea (Müller). Comp Biochem Physiol 131C: 477–489.

    CAS  Google Scholar 

  • Vioque-Fernández A, Alves de Almeida E, López-Barea J (2007) Esterases as pesticide biomarkers in crayfish (Procambarus clarkii, Crustacea): Tissue distribution, sensitivity to model compound and recovery from inactivation. Comp Biochem Physiol 145C: 404–412.

    Google Scholar 

  • Virtanen MT, Hattula ML (1982) The fate of 2,4,6-trichlorophenol in an aquatic continuous-flow system. Chemosphere 11: 641–649.

    Article  CAS  Google Scholar 

  • Vose JR, Cheng JY, Antia NJ, Towers HN (1971) The catabolic fission of the aromatic ring of phenylalanine by marine planktonic algae. Can J Bot 49: 259–261.

    Article  CAS  Google Scholar 

  • Wandiga SO, Ongeri DMK, Mbuvi L, Lalah JO, Jumba IO (2002) Accumulation, distribution of 14C-1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (p,p -DDT) residues in a model tropical marine ecosystem. Environ Technol 23: 1285–1292.

    Article  CAS  Google Scholar 

  • Wang JS, Simpson KL (1996) Accumulation and depuration of DDTs in the food chain from Artemia to brook trout (Salvelinus fontinalis). Bull Environ Contam Toxicol 56: 888–895.

    Article  CAS  Google Scholar 

  • Wang WH, Lay JP (1989) Fate and effects of salicylic acid compounds in freshwater systems. Ecotoxicol Environ Saf 17: 308–316.

    Article  CAS  Google Scholar 

  • Wang X, Harada S, Watanabe M, Kashikawa H, Geyer HJ (1996) Modelling the bioconcentration of hydrophobic organic chemicals in aquatic organisms. Chemosphere 32: 1783–1793.

    Article  CAS  Google Scholar 

  • Wang YS, Hwang KL, Hsieh YN, Chen YL (1992a) Fate of the herbicide naproanilide in a rice paddy model ecosystem. J Pestic Sci 17: 161–167.

    Google Scholar 

  • Wang YS, Jaw CG, Tang HC, Lin TS, Chen YL (1992b) Accumulation and release of herbicides butachlor, thiobencarb and chlomethoxyfen by fish, clam and shrimp. Bull Environ Contam Toxicol 48: 474–480.

    Article  Google Scholar 

  • Warner NA, Wong CS (2006) The freshwater invertebrate Mysis relicta can eliminate chiral organochlorine compounds enantioselectively. Environ Sci Technol 40: 4158–4164.

    Article  CAS  Google Scholar 

  • Warshawsky D, Keenan TH, Reilman R, Cody TE, Radike MJ (1990) Conjugation of benzo[a]pyrene by freshwater green alga Selenastrum capricornutum. Chem-Biol Interact 74: 93–105.

    Article  CAS  Google Scholar 

  • Warshawsky D, Radike MJ, Jayasimhulu K, Cody T (1988) Metabolism of benzo[a]pyrene by a dioxygenase system of the freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152: 540–544.

    Article  CAS  Google Scholar 

  • Watanabe S, Watanabe S, Ito K (1985) Accumulation and excretion of herbicides in various tissues of mussel. J Food Hyg Soc Jpn 26: 496–499.

    CAS  Google Scholar 

  • Watanabe S, Watanabe S, Ito K (1987) Reduction metabolites of the herbicide chlornitrofen (CNP) in mussel. J Food Hyg Soc Jpn 28: 277–280.

    CAS  Google Scholar 

  • Watanabe Y (2000) High-valent intermediates. In: The Porphyrin Handbook. Biochemistry and Binding: Activation of Small Molecules. Kadish KM, Smith KM, Guilard R (eds) Academic Press, New York, vol 4, Chapter 30, pp 97–117.

    Google Scholar 

  • Weinberger P, Greenhalgh R (1985) The sorptive capacity of an aquatic macrophyte for the pesticide aminocarb. J Environ Sci Health B 20: 263–273.

    Article  CAS  Google Scholar 

  • Weinberger P, Greenhalgh R, Moody RP, Boulton B (1982) Fate of fenitrothion in aquatic microcosms and the role of aquatic plants. Environ Sci Technol 16: 470–473.

    Article  CAS  Google Scholar 

  • Weiner JA, DeLorenzo ME, Fulton MH (2004) Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aquat Toxicol 68: 121–128.

    Article  CAS  Google Scholar 

  • Wheelock CE, Shan G, Ottea J (2005) Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30: 75–83.

    Article  CAS  Google Scholar 

  • Whitten BK, Goodnight CJ (1966) The comparative chemical composition of two aquatic oligochaetes. Comp Biochem Physiol 17: 1205–1207.

    Article  CAS  Google Scholar 

  • Wiegand C, Pehkonen S, Akkanen J, Penttinen OP, Kukkonen JVK (2007) Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved natural organic matter and impact on energy costs, biotransformation and antioxidative enzymes. Chemosphere 66: 558–566.

    Article  CAS  Google Scholar 

  • Wilbrink M, Groot EJ, Jansen R, de Vries Y, Vermeulen NPE (1991b) Occurrence of a cytochrome P-450-containing mixed-function oxidase system in the pond snail, Lymnaea stagnalis. Xenobiotica 21: 223–233.

    Article  CAS  Google Scholar 

  • Wilbrink M, van de Merbel NC, Vermeulen NP (1991a) Glutathione-S-transferase activity in the digestive gland of the pond snail, Lymnaea stagnalis. Comp Biochem Physiol 99C: 185–189.

    CAS  Google Scholar 

  • Wildi E, Nagel R, Steinberg CEW (1994) Effects of pH on the bioconcentration of pyrene in the larval midge, Chironomus riparius. Water Res 28: 2553–2559.

    Article  CAS  Google Scholar 

  • Williamson KC, Shofer SL, Tjeerdema RS (1995) Toxicokinetics and biotransformation of p-nitrophenol in the black turban snail (Tegula funebralis). Aquat Toxicol 33: 113–123.

    Article  CAS  Google Scholar 

  • Wofford HW, Wilsey CD, Neff GS, Giam CS, Neff JM (1981) Bioaccumulation and metabolism of phthalate esters by oysters, brown shrimp, and sheephead minnows. Ecotoxicol Environ Saf 5: 202–210.

    Article  CAS  Google Scholar 

  • Wolf SD, Lassiter RR, Wooten SE (1991) Predicting chemical accumulation in shoots of aquatic plants. Environ Toxicol Chem 10: 665–680.

    Article  CAS  Google Scholar 

  • Wolfe NL, Hoehamer CF (2003) Enzymes used by plants and microorganisms to detoxify organic compounds. In: Phytoremediation: Transformation and Control of Contaminants. McCutcheon SC, Schnoor JL (eds) John Wiley & Sons, Inc., Chichester, Chapter 5, pp 159–187.

    Google Scholar 

  • Wood BJB (1974) Fatty acids and saponifiable lipids. In: Algal Physiology and Biochemistry. Stewart WDP (ed) Botanical Monographs vol 10, Blackwell Scientific Publications, Oxford, Chapter 8, pp 236–265.

    Google Scholar 

  • Woodburn KB, Hansen SC, Roth GA, Strauss K (2003) The bioconcentration and metabolism of chlorpyrifos by the eastern oyster, Crassostrea virginica. Environ Toxicol Chem 22: 276–284.

    CAS  Google Scholar 

  • Wright SJL, Maule A (1982) Transformation of the herbicide propanil and chlorpropham by micro-algae. Pestic Sci 13: 253–256.

    Article  CAS  Google Scholar 

  • Wright SJL, Stainthorpe AF, Downs JD (1977) Interactions of the herbicide propanil and a metabolite 3,4-dichloroaniline with blue-green algae. Acta Phytopathol Acad Sci Hung 12: 51–60.

    CAS  Google Scholar 

  • Yadav DV, Agarwal HC, Pillai MKK (1978) Uptake, metabolism and excretion of DDT by the fresh water snail, Vivipara heliciformis. Bull Environ Contam Toxicol 15: 300–306.

    Article  Google Scholar 

  • Yamato Y, Kiyonaga M, Watanabe T (1983) Comparative bioaccumulation and elimination of HCH isomers in short-necked clam (Venerupis japonica) and guppy (Poecilia reticulate). Bull Environ Contam Toxicol 31: 352–359.

    Article  CAS  Google Scholar 

  • Yang S, Wu RSS, Kong RYC (2002) Biodegradation and enzymatic responses in the marine diatom Skeletonema costaum upon exposure to 2,4-dichlorophenol. Aquat Toxicol 59: 191–200.

    CAS  Google Scholar 

  • Yang W, Spurlock F, Liu W, Gan J (2006) Effects of dissolved organic matter on permethrin bioavailability to daphnia species. J Agric Food Chem 54: 3967–3972.

    Article  CAS  Google Scholar 

  • Yockim RS, Isensee AR, Jones GE (1978) Distribution and toxicity of TCDD and 2,4,5-T in an aquatic model ecosystem. Chemosphere 7: 215–220.

    Article  CAS  Google Scholar 

  • Yockim RS, Isensee AR, Walker EA (1980) Behavior of trifluralin in aquatic model ecosystem. Bull Environ Contam Toxicol 24: 134–141.

    Article  CAS  Google Scholar 

  • Yoshida T, Sako Y, Uchida A, Kakutani T, Arakawa O, Noguchi T, Ishida Y (2002) Purification and characterization of sulfotransferase specific to O-22 of 11-hydroxy saxitoxin from the toxic dinoflagellate Gymnodinium catenatum (dinophyceae). Fish Sci 68: 634–642.

    Article  CAS  Google Scholar 

  • You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40: 6348–6353.

    Article  CAS  Google Scholar 

  • Yu CC, Booth GM, Hansen DJ, Larsen JR (1974a) Fate of bux insecticide in a model ecosystem. Environ Entomol 3: 975–977.

    CAS  Google Scholar 

  • Yu CC, Booth GM, Hansen DJ, Larsen JR (1974b) Fate of carbofuran in a model ecosystem. J Agric Food Chem 22: 431–434.

    Article  CAS  Google Scholar 

  • Yu CC, Booth GM, Hansen DJ, Larsen JR (1975b) Fate of pyrazon in a model ecosystem. J Agric Food Chem 23: 309–311.

    Article  CAS  Google Scholar 

  • Yu CC, Booth GM, Hansen DJ, Larsen JR (1975c) Fate of alachlor and propachlor in a model ecosystem. J Agric Food Chem 23: 877–879.

    Article  CAS  Google Scholar 

  • Yu CC, Booth GM, Hansen DJ, Larsen JR (1975d) Fate of triazine herbicide cyanazine in a model ecosystem. J Agric Food Chem 23: 1014–1015.

    Article  CAS  Google Scholar 

  • Yu CC, Hansen DJ, Booth GM (1975a) Fatae of dicamba in a model ecosyetm. Bull Environ Contam Toxicol 13: 280–283.

    Article  CAS  Google Scholar 

  • Yu CC, Sanborn JR (1975) The fate of parathion in a model ecosystem. Bull Environ Contam Toxicol 13: 543–550.

    Article  CAS  Google Scholar 

  • Yuen WK, Ho JW (2001) Purification and characterization of multiple glutathione S-transferase isozymes from Chironomidae larvae. Comp Biochem Physiol 129A: 631–640.

    CAS  Google Scholar 

  • Yu-yun T, Thumm W, Jobelium-Korte M, Attar A, Freitag D, Kettrup A (1993) Fate of two phenylbenzoylurea insecticides in an algae culture system (Scenedesmus subspicatus). Chemosphere 26: 955–962.

    Article  Google Scholar 

  • Zablotowicz RM, Schrader KK, Locks MA (1988) Algal transformation of flumeturon and atrazine by N-dealkylation. J Environ Sci Health B33: 511–528.

    Google Scholar 

  • Zaroogian GE, Heltshe JF, Johnson M (1985) Estimation of bioconcentration in marine species using structure-activity models. Environ Toxicol Chem 4: 3–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Katagi .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Chemical Structures of Organic Chemicals and PAHs (Polyaromatic Hydrocarbons)

figure 1_a_191382_1_En

Appendix 2: Chemical Structures of Organochlorine Pesticides and Related Compounds

figure 1_b_191382_1_En

Appendix 3: Chemical Structures of Organophosphorus Pesticides

figure 1_c_191382_1_En

Appendix 4: Chemical Structures of Acid, Ester, and Amide Pesticides and Related Compounds

figure 1_d_191382_1_En

Appendix 5: Chemical Structures of Carbamate and Urea Pesticides and Related Compounds

figure 1_e_191382_1_En

Appendix 6: Chemical Structures of Miscellaneous Pesticides

figure 1_h_191382_1_En

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katagi, T. (2010). Bioconcentration, Bioaccumulation, and Metabolism of Pesticides in Aquatic Organisms. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 204. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1440-8_1

Download citation

Publish with us

Policies and ethics